tìm gtnn của A=/x-a/+/x-b/+/x-c/+/x-d/ với a<b<c<d
Tìm GTNN của A=|x-a|+|x-b|+|x-c|+|x-d| với a<b<c<d
cái cuối là |x-d| chứ bạn
nếu mình nói đúng thì gợi ý là bạn nhóm cái đầu với cái cuối, 2 cái giữa với nhau rồi áp dụng tính chất |a| + |b| ≥ |a+b|
Tìm GTNN của A = | x-a | + | x-b | + | x-c | + | x-c | với a<b<c<d
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
a , Tìm GTNN của A = | x - 3 | + 50
b , Với giá trị nào của x thì biểu thức B = 1000 - | x + 5 | có GTLN với GTLN đó
c , Tìm GTNN của C = ( x - 2016 ) ^2 - 2017
d, với giá trị nào của x và y thì biểu thức D = | x - 100 | ^ 3 + | y + 200 | - 1 có GTNN và tìm GTNN đó
Mong các bn giai giúp mk nha mk đang cân gấp
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
Tìm GTNN của |x-a|+|x-b|+|x-c|+|x-d| với a<b<c<d
Giúp với mn ơi ( toán lớp 7 )
Đặt: \(A=|x-a|+|x-b|+|x-c|+|x-d|\)
Đặt: \(B=|x-a|+|x-d|\)
Ta có: \(B=|x-a|+|x-d|=|x-a|+|d-x|\)
Và: \(B\ge|x-a+d-x|=d-a\)
\(\Rightarrow Min_B=d-a\)
Đạt được \(\Leftrightarrow\left(x-a\right)\left(d-x\right)\ge0\)
Giải ta được: \(a\le x\le d\left(1\right)\)
Đặt \(C=|x-b|+|x-c|\)
\(C=|x-b|+|c-x|\ge|x-b+c-x|\)
\(\Rightarrow C\ge c-b\)
\(\Rightarrow Min_C=c-b\Leftrightarrow\left(x-b\right)\left(c-x\right)\ge0\)
Giải ra được: \(b\le x\le x\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow Min_A=d-a+c-b\)
Dấu " = " xảy ra \(\Leftrightarrow b\le x\le c\)
Tìm GTNN của biểu thức:
| x - a | + | x - b | + | x - c | +| x - d | với a<b<c<d
Áp dụng BĐT |a| + |b| ≥ |a + b|, dấu bằng xảy ra <=> ab ≥ 0, ta có:
|x - a| + |x - d| ≥ |x - a| + |d - x| ≥ |x - a + d - x| = d - a (1)
|x - b| + |x - c| ≥ |x - b| + |c - x| ≥ |x - b + c - x| = c - b (2)
Từ (1) và (2) => |x - a| + |x - d| + |x - b| + |x - c| ≥ d - a + c - b
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-a\right)\left(d-x\right)\ge0\\\left(x-b\right)\left(c-x\right)\ge0\end{cases}}\)
+) Giải: (x - a)(d - x) ≥ 0
Th1: \(\hept{\begin{cases}x-a\ge0\\d-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge a\\x\le d\end{cases}}\Rightarrow a\le x\le d\) (3)
Th2: \(\hept{\begin{cases}x-a\le0\\d-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le a\\x\ge d\end{cases}}\Rightarrow d\le x\le a\)(Vô lý vì a < d)
Giải (x - b)(c - x) ≥ 0
Th1: \(\hept{\begin{cases}x-b\ge0\\c-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge b\\x\le c\end{cases}}\Rightarrow b\le x\le c\) (4)
Th2: \(\hept{\begin{cases}x-b\le0\\c-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le b\\x\ge c\end{cases}}\Rightarrow c\le x\le b\)(Vô lý vì b < c)
Từ (3) và (4) => Dấu bằng xảy ra <=> a ≤ x ≤ d và b ≤ x ≤ c
Mà a < b < c < d
=> Dấu bằng xảy ra <=> b ≤ x ≤ c
Vậy GTNN |x - a| + |x - d| + |x - b| + |x - c| = d - a + c - b <=> b ≤ x ≤ c
Tìm GTNN x(x+1)(x+2)(x+3)
GTNN của (a+b+c)(1/a+1/b+1/c) với a,b,c dương
GTNN của a^2+b^2+c^2 biết a+b+c=3/2
Giúp e với!!
a)A=x(x+1)(x+2)(x+3)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
Đặt \(t=x^2+3x\) ta đc:
\(t\left(t+2\right)\)\(=t^2+2t+1-1\)
\(=\left(t+1\right)^2-1\ge-1\)
Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)
Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)
b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Với a,b,c dương ta áp dụng Bđt Cô si 3 số:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu = khi a=b=c
Vậy MinB=9 khi a=b=c
c)\(C=a^2+b^2+c^2\)
Áp dụng Bđt Bunhiacopski 3 cặp số ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
\(\Rightarrow C\ge\frac{3}{4}\)
Dấu = khi \(a=b=c=\frac{1}{2}\)
Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)
Tìm GTNN của:A=\(|x-a|+|x-b|+|x-c|+|x-d|với\) a<b<c<d
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Cho x , y ∈ ℤ
a) Với giá trị nào của x thì biểu thức A = 1000 − x + 5 có GTLN; Tìm GTLN đó.
b) Với giá trị nào của y thì biểu thức B = y − 3 + 50 có GTNN. Tìm GTNN đó.
c) Với giá trị nào của x, y thì biểu thức C = x − 100 + y + 200 − 1
có GTNN. Tìm GTNN đó