Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tony
Xem chi tiết
Vũ Phương Thanh
25 tháng 2 2016 lúc 12:29

cái cuối là  |x-d| chứ bạn

nếu mình nói đúng thì gợi ý là bạn nhóm cái đầu với cái cuối, 2 cái giữa với nhau rồi áp dụng tính chất |a| + |b| ≥ |a+b|

Hoàng Tony
25 tháng 2 2016 lúc 12:30

cảm ơn bạn nhé , tại mình nhìn nhầm ahjhj 

Đỗ Thị Hương Giang
21 tháng 1 2017 lúc 9:08

Mk cx đg cần .Ahihi

Shin đẹp trai
Xem chi tiết
VanHeSing
6 tháng 4 2017 lúc 13:14

bằng bao nhieu

Nguyễn Xuân Toàn
7 tháng 11 2017 lúc 12:41

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy !!!

VRCT_Mối Tình Mùa Đông_S...
Xem chi tiết
Nguyễn Thành Long
15 tháng 3 2017 lúc 21:35

Vì | x -3 | > hoặc = 0

Suy ra : |x-3|+50 >hoặc =50

Vì A nhỏ nhất suy ra | x-3 | +50 =50

Suy ra x-3 =0

Suy ra x=3

Vậy GTNN của A = 50 khi x=3

#_vô_diện_♡
Xem chi tiết
Agatsuma Zenitsu
19 tháng 1 2020 lúc 23:23

Đặt: \(A=|x-a|+|x-b|+|x-c|+|x-d|\)

Đặt: \(B=|x-a|+|x-d|\)

Ta có: \(B=|x-a|+|x-d|=|x-a|+|d-x|\)

Và: \(B\ge|x-a+d-x|=d-a\)

\(\Rightarrow Min_B=d-a\)

Đạt được \(\Leftrightarrow\left(x-a\right)\left(d-x\right)\ge0\)

Giải ta được: \(a\le x\le d\left(1\right)\)

Đặt \(C=|x-b|+|x-c|\)

\(C=|x-b|+|c-x|\ge|x-b+c-x|\)

\(\Rightarrow C\ge c-b\)

\(\Rightarrow Min_C=c-b\Leftrightarrow\left(x-b\right)\left(c-x\right)\ge0\)

Giải ra được: \(b\le x\le x\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow Min_A=d-a+c-b\)

Dấu " = " xảy ra \(\Leftrightarrow b\le x\le c\)

Khách vãng lai đã xóa
FFPUBGAOVCFLOL
Xem chi tiết
Nhật Hạ
19 tháng 1 2020 lúc 18:10

Áp dụng BĐT |a| + |b| ≥ |a + b|, dấu bằng xảy ra <=> ab ≥ 0,  ta có:

|x - a| + |x - d| ≥ |x -  a| + |d - x| ≥ |x - a + d - x| = d - a   (1)

|x - b| + |x - c| ≥ |x -  b| + |c - x| ≥ |x - b + c - x| = c - b    (2)

Từ (1) và (2) => |x - a| + |x - d| + |x - b| + |x - c| ≥ d - a + c - b

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x-a\right)\left(d-x\right)\ge0\\\left(x-b\right)\left(c-x\right)\ge0\end{cases}}\)

+) Giải: (x - a)(d - x) ≥ 0 

Th1: \(\hept{\begin{cases}x-a\ge0\\d-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge a\\x\le d\end{cases}}\Rightarrow a\le x\le d\)  (3)

Th2: \(\hept{\begin{cases}x-a\le0\\d-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le a\\x\ge d\end{cases}}\Rightarrow d\le x\le a\)(Vô lý vì a < d)

Giải (x - b)(c - x) ≥ 0 

Th1: \(\hept{\begin{cases}x-b\ge0\\c-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge b\\x\le c\end{cases}}\Rightarrow b\le x\le c\)  (4)

Th2: \(\hept{\begin{cases}x-b\le0\\c-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le b\\x\ge c\end{cases}}\Rightarrow c\le x\le b\)(Vô lý vì b < c)

Từ (3) và (4) => Dấu bằng xảy ra <=> a ≤ x ≤ d và b ≤ x ≤ c 

Mà a < b < c < d

=> Dấu bằng xảy ra <=> b ≤ x ≤ c 

Vậy GTNN |x - a| + |x - d| + |x - b| + |x - c| = d - a + c - b <=> b ≤ x ≤ c 

Khách vãng lai đã xóa
Tô Hoài Dung
Xem chi tiết
Thắng Nguyễn
2 tháng 10 2016 lúc 14:05

a)A=x(x+1)(x+2)(x+3)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)

Đặt \(t=x^2+3x\) ta đc:

\(t\left(t+2\right)\)\(=t^2+2t+1-1\)

\(=\left(t+1\right)^2-1\ge-1\)

Dấu = khi \(t=-1\Rightarrow x^2+3x=-1\)\(\Rightarrow\)\(x=\frac{-3\pm\sqrt{5}}{2}\)

Vậy MinA=-1 khi \(x=\frac{-3\pm\sqrt{5}}{2}\)

b)\(B=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Với a,b,c dương ta áp dụng Bđt Cô si 3 số:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu = khi a=b=c

Vậy MinB=9 khi a=b=c

c)\(C=a^2+b^2+c^2\)

Áp dụng Bđt Bunhiacopski 3 cặp số ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1a+1b+1c\right)^2=\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\)

\(\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)

\(\Rightarrow C\ge\frac{3}{4}\)

Dấu = khi \(a=b=c=\frac{1}{2}\)

Vậy MinC=\(\frac{3}{4}\) khi \(a=b=c=\frac{1}{2}\)

luong long
Xem chi tiết
Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2018 lúc 8:10