Cho phân số A = \(\dfrac{3x+8}{3x-1}\). Tìm số nguyên x để A đạt giá trị lớn nhất.
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Tìm x thuộc số nguyên sao cho biểu thức A = \(\dfrac{3x+7}{x-1}\) đạt giá trị nhỏ nhất.
\(A=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
A đạt giá trị nhỏ nhất khi \(\dfrac{10}{x-1}\) đạt giá trị nhỏ nhất
\(\Rightarrow x-1\) là số âm lớn nhất
Mà x nguyên \(\Rightarrow x-1\) là số nguyên âm lớn nhất
\(\Rightarrow x-1=-1\)
\(\Rightarrow x=0\)
Cho phân số A = 2n+4/x-3. a) Tìm số nguyên x để A là một số nguyên. b) Tìm số nguyên x để A đạt giá trị lớn nhất. c) Tìm số nguyên x để A đạt giá trị nhỏ nhất.
ta có
\(A=\dfrac{2x+4}{x-3}=\dfrac{2x-6+10}{x-3}=2+\dfrac{10}{x-3}\) nguyên khi x-3 là ước của 10 hay
\(x-3\in\left\{-10,-5,-2,-1,1,2,5,10\right\}\) hay
\(x\in\left\{-7,-2,2,4,5,8,13\right\}\)
b. Khi x nguyên thì A lớn nhất khi x-3= 1 hay x= 4.
c. Để A nhỏ nhất thì x -3 =-1 hay x = 2
Cho biểu thức A=3/x-1
a. Tìm số nguyên x để A đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất.
b. Tìm số nguyên x để A đạt giá trị lớn nhất. Tìm giá trị lớn nhất.
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
Cho \(A=\dfrac{3x-2}{1-2x}\). Tìm x để A đạt giá trị lớn nhất.
Cho biểu thức A = 3/(x-1)
a) Tìm số nguyên x để A đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó.
b) Tìm số nguyên x để A đạt giá trị lớn nhất và tìm giá trị lớn nhất đó.
A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá
Cho phân số A = \(\dfrac{5a+3}{7a+4}\) ( A ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, Tìm a ∈ N để Phân số A đạt giá trị lớn nhất
\(\dfrac{help}{me}\)
Cho Phân số A=\(\dfrac{5a+3}{7a+4}\) ( a ∈ Z )
a, Phân số trên rút gọn được cho những số nguyên nào?
b, tìm a ∈ N để Phân số A đạt giá trị lớn nhất.
\(\dfrac{help}{me}\)
a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)
\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.
b) \(A=\dfrac{5a+3}{7a+4}\)
\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)
\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)
Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)
2. Tìm x thuộc số nguyên sao cho biểu thức A 18-3x 6-2x = đạt giá trị lớn nhất
Biểu thức không rõ ràng. Bạn xem lại.