tìm ngiệm của đa thức
N(x)=5x^2+9x+4
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^{^{ }5}\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b: Hệ số cao nhất của P(x) là 1
Hệ số tự do của P(x) là 0
`a)`
`@P(x)=x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4`
`P(x)=x^5+(7x^4-5x^4)-9x^3-(2x^2-2x^2)-x`
`P(x)=x^5+2x^4-9x^3-x`
`@Q(x)=5x^4-x^5+4x^2-6+9x^3-8+x^5`
`Q(x)=(-x^5+x^5)+5x^4+9x^3+4x^2-(6+8)`
`Q(x)=5x^4+9x^3+4x^2-14`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)` Đa thức `P(x)` có:
`@` Hệ số cao nhất: `1`
`@` Hệ số tự do: `0`
Tìm ngiệm của đa thức sau
9x^2 + 100x +8
\(\Delta=100^2-4\cdot8\cdot9=9712>0\Rightarrow\) phương trình đã cho có 2 nghiệm phân biệt
X1=\(\frac{-100+\sqrt{9712}}{2\cdot9}\)
X2=\(\frac{-100-\sqrt{9712}}{2\cdot9}\)
Câu 4.(1đ)Tìm nghiệm của đa thức:
A(x)= \(5x^2\)+9x+4
Đặt A(x)=0
=>5x2+9x+4=0
=>5x2+5x+4x+4=0
=>(x+1)(5x+4)=0
=>x=-1 hoặc x=-4/5
Ta có A(x) = \(5x^2+9x+4\)
= \(5x^2+5x+4x+4\)
= \(5x\left(x+1\right)\) + \(4\left(x+1\right)\)
= \(\left(x+1\right)\left(5x+4\right)\)
Ta có \(\left(x+1\right)\left(5x+4\right)\)= 0
=> \(\left[{}\begin{matrix}x+1=0\\5x+4=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\5x=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=\dfrac{-4}{5}\end{matrix}\right.\)
Vậy đa thức có nghiệm là -1 hoặc -4/5
tìm nghiệm của đa thức f(x)= x^2+7x-8
Tìm nghiệm của đa thức k(x)= 5x^2+9x+4
a) \(f\left(x\right)=x^2+7x-8=0\)
\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x-1=0\) hoặc \(x+8=0\)
Nếu \(x-1=0\Rightarrow x=1\)
Nếu \(x+8=0\Rightarrow x=-8\)
Vậy đa thức f(x) có nghiệm là 1 và -8
b) \(k\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)
\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)
Nếu \(x+1=0\Rightarrow x=-1\)
Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)
Vậy đa thức k(x) có nghiệm là -1 và -4/5
tìm nghiệm của đa thức N(x)=5x^2+9x+4
N(x)=0
=>5x2+9x+4=0
5x2+5x+4x+4=0
5x.(x+1)+4.(x+1)=0
(x+1)(5x+4)=0
=>x+1=0 hoặc 5x+4=0
x=-1 hoặc x=-4/5
Tìm ngiệm của các đa thức
a, g(x)= x^3 - 2x^2 + x
b, k(x) = x^3 + 5x^2 + 6x
\(g\left(x\right)=x^3-2x^2+x\)
\(x^3-2x^2+x=x\left(x^2-2x+1\right)\)
\(\Rightarrow x\left(x^2+2x+1\right)=x\left(x-1\right)^2\)
\(g\left(x\right)=0\)
Tập nghiệm của g(x) là { 0 ; 1 }
tìm ngiệm của đa thức sau: a) x2+5x b)3x2-4x c)5x5+10x
a. Giả sử x2 + 5x = 0
=> x.(x + 5) = 0
=> x = 0 hoặc x + 5 = 0
=> x = 0 hoặc x = -5
Vậy đa thức có nghiệm là 0 hoặc -5.
b. Giả sử 3x2 - 4x = 0
=> x.(3x - 4) = 0
=> x = 0 hoặc 3x - 4 = 0
=> x = 0 hoặc x = 4/3
Vậy đa thức có nghiệm là 0 hoặc 4/3.
c. Giả sử 5x2 + 10x = 0
=> 5x.(x + 2) = 0
=> 5x = 0 hoặc x + 2 = 0
=> x = 0 hoặc x = -2
Vậy đa thức có nghiệm là 0 hoặc -2.
Tham khảo tại đây nhé bạn: http://olm.vn/hoi-dap/question/96757.html
a. x2 + 5x = 0
x (x+5) = 0
=> x = 0 và x + 5 = 0
=> x = 0 và x = 0 - 5 = -5
vậy nghiệm của đa thức là 0 và -5
b. 3x2 – 4x = 0
=> x (3x - 4) = 0
=> x= 0 và 3x - 4 = 0
=> x = 0 và 3x = 0 + 4 = 4 và x = 4/3
vậy nghiệm của đa thức là 0 và 4/3
c. 5x5 + 10x = 0
=> x (5x4 + 10 ) = 0
=> x = 0 và 5x4 + 10 = 0
=> x = 0 và 5x4 = 0 - 10 = -10
=> x= 0 và x4 = -10/5 = -2
vậy ngiệm của đa thức là 0
Chúc bạn học tốt !
Bài 4: Cho hai đa thức:
P(x)= \(x^5-2x^2+7x^4-9x^3-x+2x^2-5x^4\)
Q(x)= \(5x^4-x^5+4x^2-6+9x^3-8+x^5\)
a) Sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến
b) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x)
c)Tính M(x)=P(x)+Q(x)
d)Tính M(2), M(-2),M(\(\dfrac{1}{2}\))
Các bạn chỉ giải phần D thôi nha còn những bạn muốn giải hết thì cũng không sao
a)\(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
b) Sửa Tìm hệ số cao nhất và hệ số tự do của đa thức Q(x)
hệ số cao nhất :9
hệ số tự do :- 14
c)\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Leftrightarrow M\left(x\right)=x^5+2x^4-9x^3-x+5x^4+9x^3+4x^2-14\)
\(M\left(x\right)=x^5+6x^4-x-14\)
d)\(M\left(2\right)=2^5+6.2^4-2-14=32-96-2-14=-80\)
\(M\left(-2\right)=\left(-2\right)^5+6.\left(-2\right)^4+2-14=-32-96+2-14=-140\)
\(M\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^5+6.\left(\dfrac{1}{2}\right)^4-\dfrac{1}{2}-14=\dfrac{1}{32}+\dfrac{3}{8}-\dfrac{1}{2}-14=-\dfrac{475}{32}\)
M(x) = 9x^5 - x^3 +4x^2 +5x +9 - 9x^5 - 6x^2 - 2 +3x^4
N(x) = 10x^2 +5x^3 - 3x^4 - 3x^3 - 8x - x^3 +9x - 7
a) Thu gọn mỗi đa thức trên rồi sắp xếp chúng theo lũy thừa giảm dần của biến, tìm hệ số cao nhất, hệ số tự do của từng đa thức
b) Tính A(x) = M(x) + N(x) và B(x) = M(x) - N(x)
c) TÌm nghiệm của đa thức A(x)
a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)
\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)
b)\(A\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=>A\left(x\right)=3x^4-x^3-2x^2+5x+7-3x^4+x^3+10x^2+x-7\)
\(A\left(x\right)=8x^2+6x\)
\(B\left(x\right)=3x^4-x^3-2x^2+5x+7+3x^4-x^3-10x^2-x+7\)
\(B\left(x\right)=6x^4-2x^3-12x^2+x+14\)
c)cho A(x) = 0
\(=>8x^2+6x=0=>x\left(8x+6\right)=0=>\left[{}\begin{matrix}x=0\\8x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{4}\end{matrix}\right.\)