Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Đức Hùng
Xem chi tiết
Nguyễn Hưng Phát
5 tháng 2 2018 lúc 23:47

Bài này dễ,ông không chịu làm thì có ^_^:

Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)

\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)

\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\)  (có 2015 phân số  \(\frac{1}{2}\))

\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)

Chim Hoạ Mi
Xem chi tiết
Mai Trọng Gia Long
18 tháng 3 2021 lúc 21:49

chép :https://olm.vn/hoi-dap/detail/99048356827.html

Khách vãng lai đã xóa
Lê Minh Tâm
21 tháng 3 2021 lúc 8:22
1/5,1/6,1/7,1/8
Khách vãng lai đã xóa
lucy
Xem chi tiết
soyeon_Tiểu bàng giải
9 tháng 8 2016 lúc 21:16

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

o0o I am a studious pers...
9 tháng 8 2016 lúc 21:20

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)

Thanh Tâm
Xem chi tiết
Nguyễn Xuân Phước
Xem chi tiết
Khôi Nguyên Hacker Man
23 tháng 4 2017 lúc 11:23

1/1-1/2+1/3-1/4+...+1/2015-1/2016

S=1-1/2+1/3-1/4+...+1/2015-1/2016

S=1-1/2016

S=2015/2016

Trần Thu Hương
Xem chi tiết
๒ạςђ ภђเêภ♕
Xem chi tiết
Nguyễn Linh Chi
18 tháng 4 2019 lúc 12:53

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)

\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)

vậy ta có điều cần chứng minh

Đặng Quốc Huy
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
Higurashi Kagome
Xem chi tiết
Nguyễn Tiến Đạt
28 tháng 3 2018 lúc 21:10

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\)(đoạn này bn tự làm đc ko nếu ko thì thi nhắn cho mk) =\(1-\frac{1}{2016}\)

Do \(1-\frac{1}{2016}< 1\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< 1\)(đpcm)

yuki asuna
28 tháng 3 2018 lúc 21:11

Có 1/2^2+1/3^2+1/4^2+....+1/2016^2 <1/1.2+1/2.3+1/3.4+....+1/2015.2016(1)

Có 1/1.2+1/2.3+1/3.4+......+1/2015.2016

=1-1/2+1/2-1/3+1/3-1/4+........+1/2015-1/2016

=(-1/2+1/2)+(-1/3+1/3)+.........+(-1/2015+1/2015)+(1-1/2016)

=1-1/2016

=2016/2016-1/2016

=2015/2016(2)

Từ (1) và (2)

Suy ra 1/2^2+1/3^2+1/4^2+........+1/2016^2 <1

Đây là đpcm