đặt tổng trên là A ta có
A<1/1.2+1/2.3+1/3.4+.....+1/2015.2016
=1-1/2016<1
=>A<1 (đpcm)
Đặt A= \(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2016!}\)
Có:\(\frac{1}{2!}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(\frac{1}{4!}<\frac{1}{3.4}\)
......................
\(\frac{1}{2016!}<\frac{1}{2015.2016}\)
=> A <\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{2015.2016}\)
=> A<\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
=> A<1-\(\frac{1}{2016}\)<1
=> A<1
( T I C K CHO MÌNH NHA )