\(A=\frac{1}{1\cdot3}+\frac{2}{3\cdot7}+\frac{3}{7\cdot13}+...+\frac{10}{91\cdot111}\)
\(\frac{1}{1\cdot3\cdot7}\)+\(\frac{1}{3\cdot7\cdot9}\)+\(\frac{1}{7\cdot9\cdot13}\)+\(\frac{1}{9\cdot13\cdot15}\)+\(\frac{1}{13\cdot15\cdot19}\)
dễ
ta tách ra xog dùng phương pháp loại trừ đó
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
giúp mk nha các bn
\(\frac{4}{1\cdot3\cdot5}+\frac{4}{3\cdot5\cdot7}+\frac{4}{5\cdot7\cdot9}+\frac{4}{7\cdot9\cdot11}+\frac{4}{9\cdot11\cdot13}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{9.11}-\frac{1}{11.13}\)
\(=\frac{1}{1.3}-\frac{1}{11.13}\)
\(=\frac{1}{3}-\frac{1}{143}\)
\(=\frac{140}{429}\)
\(\frac{1}{1\cdot3\cdot7}\)+\(\frac{1}{3\cdot7\cdot9}\)+\(\frac{1}{7\cdot9\cdot13}\)+\(\frac{1}{9\cdot13\cdot15}\)+\(\frac{1}{13\cdot15\cdot19}\)
Giải giúp mình nhanh lên nhé
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+\frac{1}{7.9.13}+\frac{1}{9.13.15}+\frac{1}{13.15.19}\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{47}{285}\)
\(\frac{1}{1\cdot3\cdot7}\)+\(\frac{1}{3\cdot7\cdot9}\)+\(\frac{1}{7\cdot9\cdot13}\)+\(\frac{1}{9\cdot13\cdot15}\)+\(\frac{1}{13\cdot15\cdot19}\)
\(\frac{1}{1.3.7}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{3.7}\right)\)
\(\frac{1}{3.7.9}=\frac{1}{6}\left(\frac{1}{3.7}-\frac{1}{7.9}\right)\)
....
\(\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{13.15}-\frac{1}{15.19}\right)\)
Cộng các vế với nhau ta được
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+...+\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{37}{3.15.19}\)
a) A = \(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot5}+...+\frac{4}{107\cdot111}\)
b) B = \(\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
c) C = \(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{51\cdot56}\)
d) D = \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
a) A = 1/3 - 1/7 + 1/7 - 1/11 +......+1/107 - 1/111
A = 1/3 - 1/111
A = ..............Bạn tự tính nhé!
b) B = 2.(3/15.18 + 3/18.21 +........+3/87.90)
B = 2.(1/15 - 1/18 + 1/18 - 1/21 +........+1/87 - 1/90)
B = 2.(1/15 - 1/90)
B = 2.5/90
B =......Tự tính nhé!
C ; D làm tương tự nhé!
a)
A=\(\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{107.111}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-.....+\frac{1}{107}-\frac{1}{111}=\frac{1}{3}-\frac{1}{111}=\frac{108}{333}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\)
\(\frac{15}{16}\)nha bạn
úm ba la xin tích
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\)
\(=1\left(\frac{1}{1}-\frac{1}{16}\right)\)
\(=1.\frac{15}{16}=\frac{15}{16}\)
3/1.4+3/4.7+3/7.10+3/10.13+3/13.16=1/1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+1/13-1/16=1-1/16=15/15
Các bạn giải giúp mình nhé! Thank you !
A = \(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{11\cdot13}\)
A=\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\right)\)
A=\(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
A=\(2.\left(1-\frac{1}{13}\right)\)
A=\(2.\frac{12}{13}=\frac{24}{13}\)
A=2(2/1.3+2/3.5+2/5.7+...+2/11.13)
A=2(1/1-1/3+1/3-1/5+1/5-1/7+...+1/11-1/13)
A=2(1/1-1/13)=2.12/13=24/13
Ta có:
\(A=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{11.13}\)
\(A=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\right)\)
\(A=2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(A=2\left(\frac{1}{1}-\frac{1}{13}\right)\)
\(A=2.\frac{12}{13}\)
\(A=\frac{24}{13}\)
bài 1 tính tổng
a) \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
b) \(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
bài 2 chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản.
bài 3 cho A=\(\frac{n+2}{n-5}\)(n thuộc z;n khác 5) tìm x để A thuộc z
bài 4 tính giá trị biểu thức
A=\(10101\cdot\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
Bài 1 :
a) =) \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)= \(1-\frac{1}{101}=\frac{100}{101}\)
b) =) \(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=) \(\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)( theo phần a)
Bài 2 :
-Gọi d là UCLN \(\left(2n+1;3n+2\right)\)( d \(\in N\)* )
(=) \(2n+1⋮d\left(=\right)3.\left(2n+1\right)⋮d\)
(=) \(6n+3⋮d\)
và \(3n+2⋮d\left(=\right)2.\left(3n+2\right)⋮d\)
(=) \(6n+4⋮d\)
(=) \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
(=) \(6n+4-6n-3⋮d\)
(=) \(1⋮d\left(=\right)d\in UC\left(1\right)\)(=) d = { 1;-1}
Vì d là UCLN\(\left(2n+1;3n+2\right)\)(=) \(d=1\)(=) \(\frac{2n+1}{3n+2}\)là phân số tối giản ( đpcm )
Bài 3 :
-Để A \(\in Z\)(=) \(n+2⋮n-5\)
Vì \(n-5⋮n-5\)
(=) \(\left(n+2\right)-\left(n-5\right)⋮n-5\)
(=) \(n+2-n+5⋮n-5\)
(=) \(7⋮n-5\)(=) \(n-5\in UC\left(7\right)\)= { 1;-1;7;-7}
(=) n = { 6;4;12;-2}
Vậy n = {6;4;12;-2} thì A \(\in Z\)
Bài 4:
A = \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
= \(10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
= \(10101.\left(\frac{1}{111111}+\frac{5}{222222}\right)\)= \(10101.\left(\frac{2}{222222}+\frac{5}{222222}\right)\)
= \(10101.\frac{7}{222222}\)( không cần rút gọn \(\frac{7}{222222}\))
= \(\frac{7}{22}\)
\(\frac{2}{4\cdot7}-\frac{2}{5\cdot9}+\frac{2}{7\cdot10}-\frac{2}{9\cdot13}+\frac{2}{10\cdot13}-\frac{2}{13\cdot17}+...+\frac{2}{301\cdot304}-\frac{2}{401\cdot405}CM:tich,tren,< \frac{1}{15}\)