Ta có:
A=1/1.3+2/3.7+3/7.13+...+10/91.111
=>2A=2/1.3+4/3.7+6/7.13+...+20/91.111
=>2A=1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111
=>2A=1-1/111=110/111
=>A=55/111
Vậy A=55/111
OK!
Ta có:
A=1/1.3+2/3.7+3/7.13+...+10/91.111
=>2A=2/1.3+4/3.7+6/7.13+...+20/91.111
=>2A=1-1/3+1/3-1/7+1/7-1/13+...+1/91-1/111
=>2A=1-1/111=110/111
=>A=55/111
Vậy A=55/111
OK!
a) A = \(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot5}+...+\frac{4}{107\cdot111}\)
b) B = \(\frac{6}{15\cdot18}+\frac{6}{18\cdot21}+\frac{6}{21\cdot24}+...+\frac{6}{87\cdot90}\)
c) C = \(\frac{1}{1\cdot6}+\frac{1}{6\cdot11}+\frac{1}{11\cdot16}+...+\frac{1}{51\cdot56}\)
d) D = \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
Các bạn giải giúp mình nhé! Thank you !
A = \(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{11\cdot13}\)
bài 1 tính tổng
a) \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)
b) \(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)
bài 2 chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản.
bài 3 cho A=\(\frac{n+2}{n-5}\)(n thuộc z;n khác 5) tìm x để A thuộc z
bài 4 tính giá trị biểu thức
A=\(10101\cdot\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
\(\frac{2}{4\cdot7}-\frac{2}{5\cdot9}+\frac{2}{7\cdot10}-\frac{2}{9\cdot13}+\frac{2}{10\cdot13}-\frac{2}{13\cdot17}+...+\frac{2}{301\cdot304}-\frac{2}{401\cdot405}CM:tich,tren,< \frac{1}{15}\)
\(\frac{ }{\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{3}{20\cdot23}}\)
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{3}{20\cdot23}\)
A=\(\frac{3}{1\cdot4}\)+\(\frac{3}{4\cdot7}\)+\(\frac{3}{7\cdot10}\)+\(\frac{3}{10\cdot13}\)+\(\frac{3}{13\cdot16}\)
\(\frac{4}{3\cdot7}+\frac{5}{7\cdot12}+\frac{1}{12\cdot13}+\frac{7}{13\cdot20}+\frac{8}{20\cdot28}\)
A=\(\frac{^{3^2}}{1\cdot4}\)+ \(\frac{3^2}{4\cdot7}\)+ \(\frac{3^2}{7\cdot10}\)+ \(\frac{3^2}{10\cdot13}\)+\(\frac{3^2}{13\cdot16}\)+......+ \(\frac{3^2}{97\cdot100}\)