Chứng minh rằng:
A= \(\frac{1}{1^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)Không là số tự nhiên
cho A=$\frac{1}{2^2} \frac{1}{3^2} \frac{1}{4^2} ... \frac{1}{2015^2} \frac{1}{2016^2}$122 132 142 ... 120152 120162 chứng minh rằng A ko phải là số tự nhiên
Cho A = \(\frac{1}{^{^{2^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A không phải là số tự nhiên
Ta có: A > 0 (Vì A gồm các phân số dương)
Ta lại có:
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A< 1-\frac{1}{2016}< 1\)
\(\Rightarrow A< 1\)
Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)
ta thấy 1/2^2;...;1/2016^2 >0=> A>0
lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016
=> A<1
=> 0<A<1 => Ako là stn
ta co: \(\frac{1}{2.2}\) <\(\frac{1}{1.2}\) ; \(\frac{1}{3.3}\) < \(\frac{1}{2.3}\) ; ............. ; \(\frac{1}{2016.2016}\) < \(\frac{1}{2015.2016}\)
=> 0 < \(\frac{1}{2015.2016}\) <1
Vay A ko phai la so tu nhien
Cho A = \(\frac{1}{^{^{2^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A không phải là số tự nhiên
Ta thấy A = 1/2^2 + 1/3^2 + 1/4^2+...+ 1/2016^2
=> A < 1/(1.2) + 1/(2.3) + 1/(3.4) +....+ 1/(2015.2016)
=> A < 1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016
=> A < 1 - 1/2016 < 1
Mặt khác :1/2^2 > 0
1/3^2 > 0
1/4^2 > 0
..........
1/2016^2 > 0
=> A > 0
=> 0<A<1
=> A ko phải số tự nhiên
Vậy a ko phải số tự nhiên
cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
chứng minh rằng A ko phải là số tự nhiên
Chứng minh rằng với số tự nhiên n > 2 thì \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)không là số tự nhiên
Chứng minh rằng số tự nhiên A chia hết cho 2017:
A=1.2.3...2016.\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)\)
Chứng minh rằng A không phải là số tự nhiên
A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}+\frac{1}{2011^2}+\frac{1}{2012^2}\)
Chứng minh rằng A không phải là số tự nhiên
Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)
Vì: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}>\frac{1}{2.3}\)
\(\frac{1}{4^2}>\frac{1}{3.4}\)
..........
\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)
\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow A<1-\frac{1}{2012}\)
\(\Rightarrow A<1\)
Vì A>0;A<1
=>A không phải số tự nhiên
=>ĐPCM
Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112
Vậy A không phải là số tự nhiên
Chứng tỏ:
A=\(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{2016^2}\) không phải là số tự nhiên.
Vì \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;.....;\frac{1}{2016^2}>0\)
\(=>A=\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}>0\) (1)
T có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};......;\frac{1}{2016^2}< \frac{1}{2015.2016}\)
\(=>A< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)
\(=>A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}< 1\) (2)
Từ (1);(2)
=>0<A<1
=>A ko là số tự nhiên (đpcm)
A=\(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{2016^2}\)
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{2016^2}>1\)
A=\(1+\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2015.2016}\)
A\(< 1+1-\frac{1}{2}+\frac{1}{2}-.......+\frac{1}{2015}-\frac{1}{2016}\)
A\(< 2-\frac{1}{2016}\)
Vì 1< A <2. Vậy A không phải là số tự nhiên