Ta có: A > 0 (Vì A gồm các phân số dương)
Ta lại có:
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(\Rightarrow A< 1-\frac{1}{2016}< 1\)
\(\Rightarrow A< 1\)
Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)
ta thấy 1/2^2;...;1/2016^2 >0=> A>0
lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016
=> A<1
=> 0<A<1 => Ako là stn
ta co: \(\frac{1}{2.2}\) <\(\frac{1}{1.2}\) ; \(\frac{1}{3.3}\) < \(\frac{1}{2.3}\) ; ............. ; \(\frac{1}{2016.2016}\) < \(\frac{1}{2015.2016}\)
=> 0 < \(\frac{1}{2015.2016}\) <1
Vay A ko phai la so tu nhien
\(Ta\)\(có\)\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015};\frac{1}{2016^2}< \frac{1}{2015.2016}\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}\)
Vậy A không phải là số tự nhiên.