Rút gọn:B=(1-1/2).(1-1/3).(1-1/4).....(1-1/20)
Rút gọn:B=(1-1/2)×(1-1/3)×(1-1/4)... (1-1/50)
Mk nhờ các bạn giúp đỡ mk với mk cần 15 phút để làm bài này thôi nên các bạn giúp mình với nka.
=1/2×2/3×3/4×....×49/50
=(1×2×3×4×...×49)/(2×3×4×...×50)
=1/50
Chắc chắn đúng
B=(2/2-1/2).(3/3-1/3)...(50/50-1/50)
B=1/2.2/3...49/50
B=1.2.3...49/2.3...50 ;B=1/50
chắc chắn thôi ak
Rút gọn:B=16-(x+1)^2/x^2+10x+25
Bài làm
\(B=\frac{16-\left(x+1\right)^2}{x^2+10x+25}\)
\(B=\frac{\left(4-x-1\right)\left(4+x+1\right)}{\left(x+5\right)^2}\)
\(B=\frac{\left(3-x\right)\left(x+5\right)}{\left(x+5\right)^2}\)
\(B=\frac{3-x}{x+5}\)
# Học tốt #
Rút gọn B=(1-1/2).(1-1/3).(1-1/4)...(1-1/20)
=1x2x3x...x19/2x3x...x20
=1/20
rút gọn B=(1-1/2)*(1-1/3)*(1-1/4)...(1-1/20)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{2}{3}\right).\left(1-\frac{3}{4}\right).....\left(1-\frac{19}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
Ta thấy hai phân số liên tiếp nhau, mẫu phân số thứ nhất giống với tử phân số thứ hai nên ta sẽ rút gọn chúng.
\(\Rightarrow B=\frac{1}{20}\)
B=(1-\(\frac{1}{2}\))*(1-\(\frac{1}{3}\))*(1-\(\frac{1}{4}\))*....*(1-\(\frac{1}{20}\))
=\(\frac{1}{2}\)*\(\frac{2}{3}\)*\(\frac{3}{4}\)*.....*\(\frac{19}{20}\)
=\(\frac{1\cdot2\cdot3\cdot4\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\)
=\(\frac{1\cdot\left(2\cdot3\cdot4\cdot...\cdot19\right)}{\left(2\cdot3\cdot4\cdot...\cdot19\right)\cdot20}\)
=\(\frac{1}{20}\)
Rút gọn: B= (1-1/2).(1-1/3).(1-1/4)....(1-1/20)
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1.\left(2.3.4...19\right)}{\left(2.3.4...19\right).20}\)
\(B=\frac{1}{20}.\)
rút gọn B=( 1-1/2) (1-1/3).(1-1/4)....(1-1/20
B=( 1-1/2) (1-1/3).(1-1/4)....(1-1/20)
B=\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times....\times\frac{19}{20}\)
\(B=\frac{1\cdot2\cdot3\cdot...\cdot19}{2\cdot3\cdot4\cdot...\cdot20}\)
\(B=\frac{1}{20}\)
Rút gọn:
B=(1-1/2).(1-1/3).(1-1/4)...(1-1/20)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)
\(B=\frac{1.2.3...19}{2.3.4...20}\)
\(B=\frac{1}{20}\)
Rút gọn B=(1-1/2)x(1-1/3)x(1 - 1/4)...(1 - 1/20)
Rút gọn: \(\dfrac{1}{3}-\dfrac{1}{3^2}+\dfrac{1}{3^3}-\dfrac{1}{3^4}+...+\dfrac{1}{3^{19}}-\dfrac{1}{3^{20}}\)
A=1/3-1/3^2+...-1/3^20
=>3A=1-1/3+...-1/3^19
=>4A=1-1/3^20
=>\(A=\dfrac{3^{20}-1}{3^{20}\cdot4}\)