tim tat ca cac bo ba so (x,y,z) thoa man x+y=1+\(\sqrt{z}\) va 2x.y=1+z
Cho 3 so x, y, z thoa man cac he thuc: \(\left(z-1\right)x-y=1\) va \(x+zy=2\)
Chmr: \(\left(2x-y\right)\left(z^2-z+1\right)=7\) va tim tat ca cac so nguyen x, y, z thoa man cac he thuc tren.
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
tim cac so m,n,p thoa man : m+n+p+8=2canm-1 + 4cann-2 +6canp-3
tim cac so x,y,z thoa man :canx+cany-1 +canz-2 = 1/2(x+y+z)
tim cac so x,y,z thoa man :x+y+z+4=2canx-2 +4cany-3+6canz-5
tim cac so nguyen x ,y,z thoa man /x-y/+/y-z/+/z-x/=2015
tim cac so x,y,z ko am thoa man x+6y=12 va 4x +5z=2018 sao cho F=x+y+z co gia tri lon nhat
tim cac so nguyen x,y,z thoa man dieu kien sau
x^2=y-1
y^2=z-1
z^2=x-1
cho ba so x,y,z khac 0 thoa man x+y+z=2015 va 1/x+1/y+1/z=1/2015 chung minh ba so x,y,z khong ton tai 2 so doi nhau
Tim cac so nguyen x, y, z thoa man x/y +y/z+z/x =y/x+/y+x/z=x+y+z=3
Cho x,y,z la cac so nguyen duong thoa man 1/x + 1/y + 1/z = 2015.
Tim GTLN cua bieu thuc P=x+y/x^2+y^2 + y+z/y^2+z^2 + z+x/z^2+x^2
Áp dụng bất đẳng thức cho ba số \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\) \(\Rightarrow\) \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\) \(\left(1\right)\)
\(y^2+z^2\ge2yz\) \(\Rightarrow\) \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\) \(\left(2\right)\)
\(z^2+x^2\ge2xz\) \(\Rightarrow\) \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\) \(\left(3\right)\)
Cộng từng vế của \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\) ta được \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)
\(\Leftrightarrow\) \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)
Dấu \("="\) xảy ra khi và chỉ khi \(x=y=z=\frac{3}{2015}\)
Vậy, \(P_{max}=2015\) \(\Leftrightarrow\) \(x=y=z=\frac{3}{2015}\)