Tìm ab,biết:9/a+b=0,ab
Tìm các chữ số a, b biết a khác b và a,b > 0 sao cho 9 / a + b = 0,ab
Tìm các chữ số a, b biết a khác b và a,b > 0 sao cho 9 / a + b = 0,ab
1)Cho a/b=c/d. CM:a^2-b^2/ab=c^2-d^2/cd
2)Cho a,b,c đôi một khác và khác 0 biết ab có gạch trên đầu ý nguyên tố ab gạch trên đầu / cd gach trên đầu
3)Tìm x,y thuộc Z khác 0 thỏa 9^2 nhân x^2=16(y^2+9)
4)TÌm GTLN của A=x+2/ |x| với x thuộc Z
5)Tìm a,b,c biết ab=2,bc=6,ac=3
8. Tìm a và b, biết a + b = 108; ab = 4/5
9. 9. Tìm a và b, biết a - b = 1/2 ; b/a = 1/2
8:Tổng số phần bằng nhau là: 4+5 =9(phần)
A là: 108 : 9 * 4 = 48, B là: 108 - 48 = 60
9:Cậu có thể nói rõ hơn a-b = 1/2 là như nào ko, tớ không hiểu lắm ?????
Each letters A or B stands for a natural number between 0 and 9. Such that:AB+AB+AB=16B The value of B is ?
lấy A ; B là các chữ số từ 0 đến 9 thỏa mãn AB + AB + AB = 16B. Tìm chữ số B
Ta có:
AB+AB+AB=16B
Ax30+Bx3=160+B
Ax30+Bx2=160?
b - ba - ab = 9 ( biết a + b = 17 ) tìm ab
\(\overline{ab}\) là số có hai chữ số đúng không em.
Trong mặt phẳng toạ độ Oxy cho tứ giác ABCD có AB=√2 ∠CBD=90 nội tiếp đường tròn (C). Phương trình các đường thẳng AB và CD lần lượt là x-y-6=0 và 5x+2y-9=0. Gọi M là giao điểm của AB và CD. Gọi I(a,b) là tâm của (C). Tìm a và b biết b>0 và MC2+MD2=108
1.tìm số xyz biết \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25},vàx-y+z=4\)
2. biết \(a^2+ab+\dfrac{b^2}{3}=25;c^2+\dfrac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠ 0; c ≠ 0; a ≠ -0. c/m rằng \(\dfrac{2c}{a}=\dfrac{b+c}{a+c}\)
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
a) Tìm a , b , c biết : \(\frac{ab+1}{9}=\frac{ac+2}{15}=\frac{bc+3}{27}\) và ab + ac + bc =11
b) Tìm các số nguyên x,y biết : x + 2xy + y = 0
a) Áp dụng tính chất dãy tỉ số bằng nhau ta dc:
\(\frac{ab+1}{9}=\frac{ac+2}{15}=\frac{bc+3}{27}=\frac{ab+ac+bc+6}{51}=\frac{17}{51}=\frac{1}{3}\)
=> \(\frac{ab+1}{9}=\frac{1}{3}\)=> ab = 2 (1)
Tương tự nha vậy ta dc: ac = 3 (2) và bc = 6 (3)
Khi đó: (abc)2 = 36 => \(\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)
* Với abc = 6
Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}}\)
* Với abc = - 6
Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=-3\\b=-2\\a=-1\end{cases}}\)
Vậy ...
b) x + 2xy + y = 0
<=> 2x + 4xy + 2y = 0
<=> 2x(1 + 2y) + (1 + 2y) = 1
<=> (2x + 1)(2y + 1) = 1
Tới đây bạn giải theo pt ước số nha