Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lvma
Xem chi tiết
lvma
Xem chi tiết
Lợi Phạm Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 20:52

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)

\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow x+\dfrac{103}{50}=5\)

hay \(x=\dfrac{147}{50}\)

Lê Thảo
Xem chi tiết
Lê Thảo
Xem chi tiết
Linh Linh
12 tháng 5 2019 lúc 10:24

Ta có : \(A=10\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)

\(\Rightarrow10\left(\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\right)\)

\(\Rightarrow10\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\right]\)

\(\Rightarrow10\left[9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\right]\)

\(\Rightarrow10\left[9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\right]\)

\(\Rightarrow10\left[9-\frac{9}{10}\right]\)

\(\Rightarrow10.\frac{81}{10}\)

\(\Rightarrow A=81\)

~\(Study\) \(well\)~

✰ᗪɾɑɕυɭɑ✰

Trần Thái Tuyên
12 tháng 5 2019 lúc 10:34

A = 10.(1/1.2+5/2.3+...+89/9.10)

A/10 = 1/1.2+5/2.3+...+89/9.10

1.9 - A/10 = (1 - 1/1.2) + (1 - 5/2.3) +...+ (1 - 89/9.10)

9 - A/10 = 1/1.2 + 1/2.3 +....+ 1/9.10

9 - A/10 = 1 - 1/2 +1/2 -1/3 +...+ 1/9 -1 /10

9 - A/10 = 1 +0 +0+...... + 0 - 1/10

9 - A/10 = 1- 1/10

9 - A/10 = 9/10

A/10 = 9 - 9/10

A/10 = 81/10

A = (81/10) . 10

A = 81.

Vậy A = 81

Lê Thảo
Xem chi tiết
Nguyễn Vũ Minh Hiếu
11 tháng 5 2019 lúc 20:23

Đặt phép tính là A

Ta có :\(A=10.\left(\frac{1}{1.2}+\frac{5}{2.3}+...+\frac{89}{9.10}\right)\)

\(\Rightarrow A=10.\left(\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\right)\)

\(\Rightarrow A=10.\left[\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\right]\)

\(\Rightarrow A=10.\left[9-\left(1-\frac{1}{10}\right)\right]\)

\(\Rightarrow A=10.\left[9-\frac{9}{10}\right]\)

\(\Rightarrow A=10.\frac{81}{10}\)

\(\Rightarrow A=81\)

~ Hok tốt ~

Nguyễn Thuy Lan
Xem chi tiết
Duc Loi
22 tháng 6 2018 lúc 9:24

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(A=1-\frac{1}{10}=\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=89\)

\(\Rightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}:1=5\)

\(\Rightarrow x=5-\frac{206}{100}=\frac{147}{50}\)

Vậy \(x=\frac{147}{50}.\)

Bùi Hà My
Xem chi tiết
Nguyễn Tuấn Minh
Xem chi tiết
Hoàng Ninh
15 tháng 7 2019 lúc 8:47

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)

\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)

\(\Leftrightarrow x+\frac{103}{50}=5\)

\(\Leftrightarrow x=5-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{147}{50}\)