Cmr x(x+1)(x+2)=x^3+3x^2+2x
CMR các bt sau ko phu thuôc vào X:
a)S=(3-2x)×3x-8+(2x+5)×(3x-2)-20x
B)T=(3x-5)×(x+11)-(2x+3)×(3x+7)
C)N=(x-5)×(x+2)+3×(x-2)×(x+2)-(3x-1/2x^2)+5x
d)C=(x^4+6)-(x+3)×(x-3)×(x^2+9)-6x^2
B1: CMR: GT của biểu thức sau ko phụ thuộc vào biến
a) x.(2x+1)-x^2.(x+2)+(x^3-x+3)
b) x.(3x^2-x+5)-(2x^3+3x-16)-x.(x^2-x+2)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=3\)
Vậy bt trên ko phụ vào biến x
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
\(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)
Vậy bt trên ko phụ vào biến x
Cho biểu thức C = (\(\dfrac{x}{x^2-x-6}\)-\(\dfrac{x-1}{3x^2-4x-15}\)) : \(\dfrac{x^4-2x^2+1}{3x^2+11x+10}\).(\(x^2\)-\(2x\)+1)
a) Rút gọn C
b)Tìm GTBT C với x = 2003
c) CMR C>0 khi x>3
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
CMR a.(x-2)(2x+2x^2)/(x+1)(4x-x^3)=-2/x+2
b. x^2+y^2+2xy-1/x^2-y^2+1+2x=x+y-1x+1-y
c(x^2+2)^2-4x^2/y(x^2+2)-2xy-(x-1)^2-1
d 3y-2--3xy+2x/1-3x-x^3+3x^2=3y-2/(1-x)^2
CMR:
\(\left(\frac{X^2-2X}{2X^2-8}-\frac{2X^2}{8-4X+2X^2-3X^3}\right).\left(1-\frac{1}{X}-\frac{2}{X^2}\right)=\frac{X+1}{2X}\)
Bài 1 ;Tìm x biết
1) (2x+1 )^3 - (2x+1)(4x^2-2x+1)-3(2x-1)=15
2) x(x-4)(x+4)-(x-5)(x^2 + 5x +25)=13
Bài 2 : Cmr các giá trị của biểu thức sau không thuộc vào giá ttij của biến :
A= (x+5)(x^2-5x+25)-(2x+1)^3-28x^3+3x(-11x+5)
B = (3x+2)^3 - 18x(3x+2)+(x-1)^3-28^3+3x(x-1)
C= (4x-1)(16x^2+4x+1)-(4x+1)^3+12(4x+1)^3+12(4x+1)-15
Tính giúp mình ạ ! Cảm ơn các cậu rất nhieeufuuuu :3
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
Cmr giá trị của biểu thức ko phụ thuộc vào biến
a,x(3x+12)-(7x-20)+x^2(2x-3)-x(2x^2+5)
b,3(2x-1)-5(x-3)+6(3x-4)-19x
mình sửa lại câu b nha
3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x+15+18x-24-19x
=(6x-5x+18x-19x)-(3-15+24)
=12
a) x(3x+12)-(7x-20)+ x2(2x-3)-x(2x2+5)
=3x2+12x-7x+20+2x3-3x2-2x3-5x
= (3x2-3x2)+(12x-7x-5x)+(2x2-2x2)+20
=20
Sau khi rút gọn thì giá trị của bt là 20. Vì vậy giá trị của bt trên không phụ thuộc vào giá trị của biến
b) 3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x-15+18x-24-19x
=(6x-5x+18x-19x)-(3+15+24)
= -42
KL thì tương tự giông câu a
A=\(\sqrt{x^2+x+1}-\dfrac{2}{x^2+1}\)
\(B=\dfrac{3x-5}{\sqrt{x^2-2x+3}}+\sqrt{x^2-x+1}\)
cmr các biểu thức sau luôn có nghĩa với mọi x
1) ĐKXĐ: \(\left\{{}\begin{matrix}x^2+x+1\ge0\\x^2+1\ne0\end{matrix}\right.\)
Ta có:
+) \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
+) \(x^2+1\ge1>0\forall x\)
Vậy biểu thức luôn xác định với mọi x
2) ĐKXĐ: \(\left\{{}\begin{matrix}x^2-2x+3>0\\x^2-x+1\ge0\end{matrix}\right.\)
Ta có:
+) \(x^2-2x+3=\left(x^2-2x+1\right)+2\)
\(=\left(x-1\right)^2+2\ge2>0\forall x\)
+) \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy biểu thức luôn xác định với mọi x