Cho hàm số y= f(x)=kx ( với k là hằng số, K#0 ). Chứng minh rằng :
f( 51x1 - 2014x2 ) = 51f(x1) - 2014f(x2)
cho hàm số y= f(x)=kx(k là hằng số khác 0 ) ta có f(10x)=
cho hàm số y=f(x)=kx(k là hằng số và khác 0)cmr: f(x1-x2)=f(x1)-f(x2)
Cho hàm số y = f(x) = kx (k là hằng số, k ( 0). Chứng minh rằng:
a/ f(10x) = 10f(x)
b/ f(x1 + x2) = f(x1) + f(x2)
c/ f(x1 - x2) = f(x1) - f(x2)
Giúp mìh vs nha! Mìh đang cần gấp! Thanks!
Cho hàm số y=f(x)= kx (k là hằng số, k # 0). Chứng minh rằng f(x1-x2)=f(x1)-f(x2)
k mk nha
Ta có f(x1-x2)=k(x1-x2)=f(x1)-f(x2) =>đpcm
Cam on ban nha! Nhung ban co the giai ro hon dc ko?
Bài 4 : Cho hàm số y = f(x) = kx (k là hằng số, k ( 0). Chứng minh rằng:
a/ f(10x) = 10f(x)
b/ f(x1 + x2) = f(x1) + f(x2)
c/ f(x1 - x2) = f(x1) - f(x2)
a. ta có \(f\left(10x\right)=k.10x=10.kx=10f\left(x\right)\)
b. \(f\left(x_1+x_2\right)=k\left(x_1+x_2\right)=kx_1+kx_2=f\left(x_1\right)+f\left(x_2\right)\)
c.\(f\left(x_1-x_2\right)=k\left(x_1-x_2\right)=kx_1-kx_2=f\left(x_1\right)-f\left(x_2\right)\)
Cho hàm số: y= f(x) = kx (k là hằng số, k khác 0). Chứng minh rằng \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
ta có:
\(f\left(x_1\right)=kx_1;f\left(x_2\right)=kx_2=>f\left(x_1-x_2\right)=k.\left(x_1-x_2\right)=kx_1-kx_2\)
vậy \(f\left(x_1-x_2\right)=f\left(x_1\right)-f\left(x_2\right)\)
tick mk nhé
Cho hàm số y = f(x) = kx ( k là hằng số, k \(\ne\)0). Chứng minh rằng f(x1- x2) = f(x1) - f(x2).
tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
Ta có: y = f(x) = kx => f(x1) = kx1 và f(x2) = kx2
Từ đó ta có: f(x1 - x2) = k(x1 - x2) (1)
f(x1) - f(x2) = kx1 - kx2 = k ( x1 - x2) (2)
Từ (1) và (2) => f(x1 - x2) = f(x1) - f(x2)
cho hàm số y=f(x)=kx(k là hằng số và khác 0)cmr: f(x1-x2)=f(x1)-f(x2)
help me!
Ta co y=kx => y=k/x => x=y/k
=> x1=y1/k ; x2 =y2/k
Tính đạo hàm của các hàm số sau:
a) \(y = {x^2} + 1;\)
b) \(y = kx + c\) (với k, c là các hằng số).
a: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x^2+1-x_0^2-1}{x-x_0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{\left(x-x0\right)\left(x+x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}x+x0=x0+x0=2x0\)
b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}\)
\(=\lim\limits_{x\rightarrow x0}\dfrac{kx+c-k\cdot x0-c}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{k\left(x-x0\right)}{x-x0}\)
=\(\lim\limits_{x\rightarrow x0}k=k\)