(2013x10-8052x2-4026):(13x12+6)+17x11=
tính nhanh 26x7-17x9+13x26-17x11
\(26\times7-17\times9+13\times26-17\times11\)
\(=26\times\left(7+13\right)-17\left(9+11\right)\)
\(=26\times20-17\times20\)
\(=20\times\left(26-17\right)\)
\(=20\times11\)
\(=220\)
a) (125x37x32):4
B) 374:(17x11)
a)(125x37x32):4 = 37000
b)374:(17x11)=2 ai k cho minh minh se k lai cho
a) = 37000
b) = 2
Hình như lúc nãi bạn cũng ra bài này Lục Thanh Nguyên ạ
Tính nhanh:
a) (125x37x32):4
b) 374:(17x11)
a) = 37000
b) = 2
mik sắp hết âm rồi, chỉ còn 69 nữa thôi, các bạn giúp mik nha, khi nào hết âm mik sẽ ra câu hỏi và giúp các bạn
mơn các bạn trc và cx mơn các bạn mà đã giúp mik trc kia ~~~~~~~~~~
Tính -1+2+(-3)+4+(-5)+6+...+(-4025)+4026
Tính tổng M=(-1)+2+(-3)+4+(-5)+6+.....+(-4025)+4026
Tính nhanh -1+2+(-3)+4+(-5)+6+...+(-4025)+4026
Lời giải:
$A=-1+2+(-3)+4+(-5)+6+....+(-4025)+4026$
$=[(-1)+2]+[(-3)+4]+[(-5)+6]+...+[(-4025)+4026]$
$=\underbrace{1+1+1+.....+1}_{2013}=1.2013=2013$
1/2+1/6+1/12+1/20+...+1/x(x+1)=2011/4026
Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(=1-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\)x+1=4026
x=4026-1
x=4025
Vậy x=4025.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(1-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{x+1}=\frac{2015}{4026}\Rightarrow x+1=\frac{4026}{2015}\Rightarrow x=\frac{2011}{2015}\)
Tớ làm bị sai đấy nhé. Bạn có thể tham khảo bài của Xyz (nếu đúng).
1/6+1/12+1/20+1/30+...1/x nhân(x+1)=2011/4026
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x + 1 = 2013 => x = 2012
Trả lời:
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Leftrightarrow x+1=2013\)
\(\Leftrightarrow x=2012\)
Vậy \(x=2012\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{x+1}{2\left(x+1\right)}-\frac{2}{2\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{x-1}{2\left(x+1\right)}=\frac{2011}{4026}\)
\(\Rightarrow\frac{4026\left(x-1\right)}{4026\cdot2\left(x+1\right)}=\frac{2011\cdot2\left(x+1\right)}{4026\cdot2\left(x+1\right)}\)
\(\Rightarrow4026x-4026=4022x+4022\)
\(\Rightarrow4026x-4022x=4022+4026\)
\(\Rightarrow4x=8048\)
\(\Rightarrow x=2012\)