Tính tổng các phân số sau:
\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... +\(\frac{1}{2009.2010}\)
a/\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
1/1.2+1/2.3+...+1/2009.2010
=1-1/2+1/2-1/3+...+1/2009-1/2010
=1-1/2010
=2009/2010
Bài: Tính tổng các phân số sau:
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)
a)1/1x2+1/2x3+....+1/2003x2004
=1-1/2+1/2-1/3+...+1/2003+1/2004
=1-1/2004
=2004/2004-1/2004
=2003/2004
b)1/1x3+1/3x5+...+1/2003x2005
=1-1/3+1/3-1/5+....+1/2003+1/2005
=1-1/2005
=2005/2005-1/2005
=2004/2005
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\)\(\frac{1}{2003.2004}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(\frac{1}{1}-\frac{1}{2004}=\frac{2003}{2004}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\)\(\frac{1}{2003.2005}\)
=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}.\frac{2004}{2005}\)
=\(\frac{1002}{2005}\)
Tính tổng các phân số sau:
\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2003.2004}\)
\(b,\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{2003.2005}\)
Giúp mình với!!!!!
a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)
\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(2A=1-\frac{1}{2005}\)
\(2A=\frac{2004}{2005}\)
\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)
a)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=\frac{1}{1}-\frac{1}{2004}\)
\(\Rightarrow=\frac{2003}{2004}\)
b)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(=\frac{1}{1}-\frac{1}{2005}\)
\(\Rightarrow=\frac{2004}{2005}\)
\(a,\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2003.2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
b) Đặt \(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)
\(\Rightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)
\(\Rightarrow2B=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\)
\(\Rightarrow2B=1-\frac{1}{2005}\)
\(\Rightarrow2B=\frac{2005}{2005}-\frac{1}{2005}\)
\(\Rightarrow2B=\frac{2004}{2005}\)
\(\Rightarrow B=\frac{2004}{2005}:2=\frac{2004}{2005}.\frac{1}{2}\)
\(\Rightarrow B=\frac{1002}{2005}\)
Vậy...
hok tốt!!
Tính tổng sau : A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
= \(1-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)
\(A=1+0+0+...+0-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2017}{2017}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Vậy: \(A=\frac{2016}{2017}\)
Cách làm của bạn Sang đầy đủ và chi tiết hơn đó bạn! :) Những bài có quy luật tương tự bạn cũng áp dụng cách giải trên nhé bạn.
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Thừa số thứ nhất của mẫu số của phân số thứ 100 là:
\(\left(100-1\right):1+1=100\)
=> Mẫu số của phân số thứ 100 là 100.101
Tổng 100 số hạng đầu tiên:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
b) Ta xét mẫu số của các số hạng trong dãy :
6 = 1.6
66 = 6.11
176 = 11.16
336 = 16.21
........
Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:
\(\left(100-1\right).5+1=496\)
=> Mẫu của phân số thứ 100 là 496.501.
Tính tổng 100 số hạng đầu:
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}=\frac{500}{501}\)
Tính tổng đẳng thức sau
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2004.2005}\)
\(A=\frac{1}{1.2}=1-\frac{1}{2}\)
\(A=\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(A=1-\frac{1}{2004}\)
\(A=\frac{2003}{2004}\)
Ủng hộ tk Đúng nha mọi người !!! ^^
\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);...; \(\frac{1}{2004.2005}=\frac{1}{2004}-\frac{1}{2005}\)
=> A=\(\frac{1}{1}-\frac{1}{2005}=\frac{2004}{2005}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2004.2005}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
Tính tổng các ps sau
a,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
b,\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2018}=\frac{2017}{2018}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2017}\right)=\frac{1}{2}.\frac{2016}{2017}\)
\(\Rightarrow B=\frac{1008}{2017}\)
tính tổng các phân số sau:
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2003.2004}\) b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
b) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{2003.2005}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
\(\Rightarrow A=\frac{2004}{2005}:2=\frac{1002}{2005}\)
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{2003.2004}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
= \(1-\frac{1}{2004}\)
= \(\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..........+\frac{1}{2003.2005}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\)
= \(1-\frac{1}{2005}\)
= \(\frac{2005}{2005}-\frac{1}{2005}=\frac{2004}{2005}\)
a, 1/ 1 . 2 + 1/2 . 3 + 1/3 . 4 + ... + 1/2003 . 2004
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2003 - 1/2004
= 1 - 1/2004
= 1 + ( -1 / 2004 )
= 2004 /2004 + ( -1 / 2004 )
= 2003 /2004
b, = 1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/2003 - 1/2005
= 1/2 x ( 1 - 1/2005 )
= 1/2 x ( 2005 /2005 - 1/2005 )
= 1/2 x 2004/2005
= 1002 / 2005
Tíck nha !!
Tính giá trị của biểu thức:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2008.2010}\)
\(C=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)
dễ mà bạn làm từ câu a nếu ra thì các câu khác cũng dễ thôi
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)