tính :
a, 3+\(\frac{1}{2+\frac{1}{3+\frac{1}{2\frac{3}{5}}}}\)
Tính \(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{99.1}}\)
Tính \(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
6 ở đâu hả https://olm.vn/thanhvien/aihaibara0
1/ Tính : \(\frac{-8}{5}+\frac{207207}{201201}\)
2/ Tính:
\(M=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}}{\frac{2001}{1}+\frac{2002}{2}+\frac{1999}{3}+...+\frac{1}{2001}}\)
1)\(\frac{-8}{5}+\frac{207207}{201201}\)
=\(\frac{-8}{5}+\frac{207}{201}\)
=\(\frac{-8}{5}+\frac{69}{67}\)
=\(\frac{-191}{335}\)
TÍNH NHANH:
\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
A= 1/3- 3/4+ 3/5+ 1/72- 2/9- 1/36+ 1/15
A= ( 1/3- 3/5+ 1/15) - (3/4- 1/72+ 2/9+ 1/36)
A= (5/15- 9/15+ 1/15) - (54/72- 1/72+ 16/72+ 2/36)
A= 1- 71/72
A= 1/72
A = \(\frac{1}{3}\)- \(\frac{3}{4}\) - ( - \(\frac{3}{5}\)) + \(\frac{1}{72}\)- \(\frac{2}{9}\)- \(\frac{1}{36}\)+ \(\frac{1}{15}\)
A = ( \(\frac{1}{3}\)+ \(\frac{3}{5}\)+ \(\frac{1}{15}\)) - ( \(\frac{3}{4}\)- \(\frac{1}{72}\)+ \(\frac{2}{9}\)+ \(\frac{1}{36}\))
A = ( \(\frac{5}{15}\)+ \(\frac{9}{15}\)+ \(\frac{1}{15}\)) - ( \(\frac{54}{72}\)- \(\frac{1}{72}\)+ \(\frac{16}{72}\)+ \(\frac{2}{72}\))
A = 1 - \(\frac{71}{72}\)
A = \(\frac{1}{72}\)
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Đừng tin bn Thạch bạn ấy nói dối đấy
Chuẩn 100% luôn tik nha
Cho biểu thức:
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
Tính bằng hai cách:
Cách 1: Tính trong ngoặc trước.
Cách 2: Bỏ ngoặc, nhóm các số hạng thích hợp.
=\(\frac{36-4+3}{6}-\frac{30+10-9}{6}-\frac{18-14+15}{6}\)
=\(\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=\frac{35-31-19}{6}-\frac{15}{6}=-\frac{5}{2}\)
bài này thì dễ:
\(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
Cách 1:
\(\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=\frac{35-31-19}{6}=-\frac{15}{6}=-\frac{5}{2}\)
Cách 2:
\(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}=-2\frac{1}{2}=-\frac{5}{2}\)
Cách 1 :
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=\left(\frac{36-4+3}{6}\right)-\left(\frac{30+10-9}{6}\right)-\left(\frac{18-14+15}{8}\right)\)
\(=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}=-\frac{15}{6}=-\frac{5}{2}\)
Cách 2 : \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(=\left(6-5-3\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)+\left(-\frac{2}{3}-\frac{5}{3}+\frac{7}{3}\right)\)
=\(-2-\frac{1}{2}=-2\frac{1}{2}=-\frac{5}{2}\)
tính nhanh:\(A=\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
Bài 1 : Cho\(\frac{1}{2}a=\frac{3}{4}b\) và a-b=4,5 .tìm a,b
Bài 2: Tính
\(a,-\frac{3}{4}+\frac{3}{4}\div\frac{3}{5}\)
\(b,\frac{5}{6}-\left(\frac{5}{6}+\frac{1}{3}\right)-\frac{1}{2}\)
\(c,1\div\left(1-\frac{1}{2}\right)^2\)
mk làm bài 1 thui,bài 2 chỉ qui đồng ms
3a/6 = 3b/4 => 3(a-b)/ (6-4) = 3.4,5/2= 13,5/2 =k
a = 2k=13,5
b = 4k/3 =9
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
94 nếu nháy chuột vào đúng 0 sẽ cho biết đúng hay sai đó bạn
Tính giá trị biểu thức A=\(\frac{1}{1!}+\frac{2^2}{3!}+\frac{3^3}{5!}+...+\frac{28^{28}}{55!}+\frac{29^{29}}{57!}\)