Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngu Người
Xem chi tiết
Thầy Giáo Toán
27 tháng 8 2015 lúc 22:13

Ta có \(2A=20x^2+20y^2+2z^2=\left(z^2+16x^2\right)+\left(z^2+16y^2\right)+4\left(x^2+y^2\right)\)

\(\ge2z\cdot4x+2z\cdot4y+4\cdot2xy=8\left(xy+yz+zx\right)=8\to A\ge4.\)

Dấu bằng xảy ra khi \(z=4x=4y,1=xy+yz+zx=x^2+4x^2+4x^2=9x^2\to x=y=\pm\frac{1}{3},z=\pm\frac{4}{3}.\)

Vậy giá trị bé nhất của \(A\) bằng \(4.\)

 

Nhật Minh
Xem chi tiết
Nguyen Ngoc Thuy Linh
Xem chi tiết
Hoàng Thanh Tuấn
30 tháng 5 2017 lúc 15:58

Luôn có \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-x\right)^2\ge0\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge xy+yz+xz\ge-1\)

\(P_{min}=-1\)dấu "=" sảy ra khi (x,y,z) là hoán vị của 3 phần tử (0,0,-1)

alibaba nguyễn
30 tháng 5 2017 lúc 16:01

Ta có:

\(xy+yz+zx=-1\)

\(\Leftrightarrow2\left(xy+yz+zx\right)=-2\)

\(\Leftrightarrow2\left(xy+yz+zx\right)+x^2+y^2+z^2=-2+x^2+y^2+z^2\)

\(\Leftrightarrow P=x^2+y^2+z^2=\left(x+y+z\right)^2+2\ge2\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+y+z=0\\xy+yz+zx=-1\end{cases}}\)

Chỉ ra 1 bộ số thỏa mãn cái đấy nhé là: \(\hept{\begin{cases}x=0\\y=1\\z=-1\end{cases}}\)

alibaba nguyễn
30 tháng 5 2017 lúc 16:03

Bộ số mà mình nhắc đến là (x; y; z) = (0; 1; - 1) nhé. Do nó bị lỗi bài giải nên mất.

Oanh Trần
Xem chi tiết
Ngọc Anh
Xem chi tiết
hiền nguyễn
Xem chi tiết
Minh Hiếu
26 tháng 4 2023 lúc 20:03

\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)

\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)

\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Ta có:

+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)

+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)

\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)

 

pro
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 19:31

\(4x^2+4y^2\ge8xy\)

\(16x^2+z^2\ge8zx\)

\(16y^2+z^2\ge8yz\)

Cộng vế với vế:

\(20x^2+20y^2+2z^2\ge8\left(xy+yz+zx\right)\)

\(\Leftrightarrow10x^2+10y^2+z^2\ge4\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{4}{3}\right)\)

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 1 lúc 21:25

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

Nguyễn Phương Nga
Xem chi tiết