Tìm số chính phương có 4 chữ số mà nó là lập phương của 1 số tự nhiên
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó. Ta có: - Số 14 không phải là số chính phương - Số là số chính phương vì 144=12^2- Số 1444 là số chính phương vì 1444=38^2. Bạn hãy tìm tất cả các số có dạng 144...4(số có các chữ số 4 sau chữ số 1) mà là số chính phương?
Tìm 1 số có 4 chữ số vừa là số chính phương vừa là lập phương của 1 số tự nhiên.
tìm 1 số chính phương có 4 chữ số và cũng là lập phương của 1 số tự nhiên
Tìm 1 số chính phương có 4 chữ số là lập phương của 1 số tự nhiên ?????????????
Tìm số tự nhiên nhỏ nhất mà lập phương của nó có tận cùng là 3 chữ số 8
Tìm số tự nhiên có nhiều hơn 3 chữ số, biết rằng nếu ta bỏ đi 3 chữ số cuối cùng của số đó thì ta được một số mới mà lập phương của nó bằng chính số cần tìm.
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số 14 không phải là số chính phương
- Số 144 là số chính phương vì 144=12.12
- Số là số chính phương vì .1444=38.38
Bạn hãy tìm tất cả các số có dạng 144....4 (số có các chữ số 4 sau chữ số 1) mà là số chính
Bài toán 104
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số \(14\) không phải là số chính phương
- Số \(144\) là số chính phương vì \(144=12\times12=12^2\)
- Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .
Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?
----------------------
Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.
Xem thêm:
Bài toán 103Bài toán 102Bài toán 101Bài toán 100Bài toán 99Hoàng Thị Thu Huyền Gửi ý kiến 23 bình luận
Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:
a, $n<4$n<4
Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.
b, $n\ge4$n≥4
Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(b∈Z)
Vì $10000\vdots16$10000⋮16 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12
Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an⋮4 nhưng không chia hết cho 16 nên:
$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$⇒ $a_n$an chia 16 dư 4. Vô lý.
Vậy $a_n$an không phải là số chính phương.
Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
Tìm ra một số có 2 chữ số biết rằng nó bằng lập phương của 1 số tự nhiên và tổng các chữ số của nó bằng bình phương của 1 số tự nhiên.
Tìm số chính phương có 2 chữ số mà bình phương của số ấy bằng lập phương tổng các chữ số của nó.