Tính
\(\frac{4}{2.3}.\frac{10}{3.4}....\frac{2016.2017-2}{2016.2017}\)
tính giá trị biểu thức A = \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
Ta có \(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2016.2017}\)
\(\Rightarrow A=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(1-\frac{1}{2017}\right)\)
\(\Rightarrow A=2\left(\frac{2016}{2017}\right)\)
\(\Rightarrow A=\frac{4032}{2017}\)
Ta có:\(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+....+\frac{2}{2016\cdot2017}\)
\(=\frac{2}{1}-\frac{2}{2}+\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+....+\frac{2}{2016}-\frac{2}{2017}\)
\(=\frac{2}{1}-\frac{2}{2017}=2-\frac{2}{2017}=\frac{4034}{2017}-\frac{2}{2017}=\frac{4032}{2017}\)
\(A=\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+...+\frac{2}{2016\cdot2017}\)
\(\frac{A}{2}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\frac{A}{2}=1-\frac{1}{2017}=\frac{2016}{2017}\)
\(A=\frac{2016}{2017}\cdot2=\frac{4032}{2017}\)
Tính tổng sau : A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
= \(1-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)
\(A=1+0+0+...+0-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2017}{2017}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Vậy: \(A=\frac{2016}{2017}\)
Cách làm của bạn Sang đầy đủ và chi tiết hơn đó bạn! :) Những bài có quy luật tương tự bạn cũng áp dụng cách giải trên nhé bạn.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
Tính một cách hợp lí tổng sau :
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}.\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
Cho P=\(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4033}{\left(2016.2017\right)^2}\)
Chứng minh rằng P<1
P=3 /1.22 +1/22.32+...+4033/20162.20172
P=1/1 -1/22 +1/22 -1/52 +...+1/20162 - 1/20172
P=1-1/20172 <1
vậy p<1
1)tính
1.2+2.3+3.4+....+2016.2017
2)tìm a; b thỏa mãn \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31 (a;b thuộc N)
mình đã thi học kì bài này và mình được 10, nhưng đã 1 năm trôi qua nên mình quên mất tiêu rùi.
rất tiếc, chúc bạn may mắn
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
B=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2016.2017}\)
C=\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2016.2018}\)
D=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
E=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}\cdot...\cdot\frac{899}{900}\)
F=1.2+2.3+3.4+...+99.100
MẤY BN NÀO BIẾT THÌ GIẢI JUP MK NHA!
Lâm đi là: 35 phút +2 giờ 20phút =2 giờ 55 phút
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2016.2018}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2016.2018}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2018}\)
\(2B=1-\frac{1}{2018}\)
\(B=\frac{2017}{\frac{2018}{2}}\)
A=(1-\(\frac{2}{2.3}\)).(1-\(\frac{2}{3.4}\)).(1-\(\frac{2}{4.5}\))....(1-\(\frac{2}{2016.2017}\))
giải chi tiết hộ em nha
cho P= \(\frac{3}{\left(1.2\right)^2}\) +\(\frac{5}{\left(2.3\right)^2}\) +\(\frac{7}{\left(3.4\right)^2}\) +...+ \(\frac{4033}{\left(2016.2017\right)^2}\)
chứng minh P<1
\(P=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.....+\frac{4033}{\left(2016.2017\right)^2}\)
\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{2017^2-2016^2}{2016^2.2017^2}\)
\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{2016^2}-\frac{1}{2017^2}\)
\(=1-\frac{1}{2017^2}< 11\) (đpcm)
Bài này trong đề thi học kì 2 môn Toán lớp 6 trường Amsterdam năm 2016-2017 này. Mình 10 luôn hehe