Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NQQ No Pro
Xem chi tiết
Akai Haruma
6 tháng 1 2024 lúc 22:15

Lời giải:

Không mất tổng quát giả sử $a\leq b\leq c$

Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.

Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.

Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$

Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$

$\Rightarrow b^2\leq 2533$

$\Rightarrow b< 51$

$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$

Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.

Nguyễn Thị Huyền Trang
12 tháng 4 2024 lúc 22:09

vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn 

+) cả 3 số a,b,c chẵn

=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )

khi đó: a2+b2+c2= 12(loại)

=> một trong 3 số a,b,c chẵn 

vì giá trị các số bằng nhau, giả sử a chẵn => a=2

khi đó: a2+b2+c2= 4+b2+c2

=> b2+c2= 5066

vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 

=> bvà c2 có tận cùng là 0, 1, 4, 5, 6, 9 

Mà b và c lẻ 

=> bvà c2 có tận cùng là 1, 5, 9 

mà 5066 có tận cùng là 6

=> bvà c2 có tận cùng là 1, 5

=> b và c có tận cùng là 1, 5

giả sử b có tận cùng là 5=> b=5

khi đó: 25+ c= 5066

                   c= 5041=712

=> c = 71

vậy, a=2, b=5, c=71 và các hoán vị của nó

Nguyen Minh Hai
Xem chi tiết
Rin Huỳnh
17 tháng 9 2021 lúc 21:32

?

Vũ Tô Minh
Xem chi tiết
Vũ Tô Minh
8 tháng 8 2021 lúc 17:49

giúp tôi

🙂T😃r😄a😆n😂g🤣
8 tháng 8 2021 lúc 18:06

\(4x=7y\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\Rightarrow\dfrac{x^2}{49}=\dfrac{y^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

      \(\dfrac{x^2}{49}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{49+16}=\dfrac{260}{65}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=196\\y^2=64\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-14;y=-8\\x=14;y=8\end{matrix}\right.\)

Phí Đức
8 tháng 8 2021 lúc 18:07

$4a=7b\Leftrightarrow \dfrac{a}{7}=\dfrac{b}{4}$

$\Leftrightarrow \dfrac{a^2}{49}=\dfrac{b^2}{16}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\dfrac{a^2}{49}=\dfrac{b^2}{16}=\dfrac{a^2+b^2}{49+16}=\dfrac{260}{65}=4$

$\Rightarrow \begin{cases}\dfrac{a^2}{49}=4\\\dfrac{b^2}{16}=4\end{cases}$

$\Leftrightarrow\begin{cases}a^2=196\\b^2=64\end{cases}$

$\Leftrightarrow \begin{cases}a=\pm 14\\b=\pm 8\end{cases}$

Vậy $a=\pm 14;b=\pm 8$

pro2k7
Xem chi tiết
tick đê Trương Bảo Châu
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 16:47

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

nguyễn hà anh
Xem chi tiết
Lê Ngọc Minh Khang
31 tháng 3 2023 lúc 15:39

Xét tổng

  Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0

Suy ra có ít nhất một trong 7 số  là số chẵn

  là số chẵn

trần minh khôi
Xem chi tiết
Đỗ Tuệ Lâm
11 tháng 5 2022 lúc 4:42

BN THAM KHẢO:

undefined

 

hải nguyễn
Xem chi tiết
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
31 tháng 8 2023 lúc 16:58

Lời giải:

Sử dụng bổ đề: Một số chính phương $x^2$ khi chia 3 dư 0 hoặc 1.

Chứng minh:

Nêú $x$ chia hết cho $3$ thì $x^2\vdots 3$ (dư $0$)

Nếu $x$ không chia hết cho $3$. Khi đó $x=3k\pm 1$ 

$\Rightarrow x^2=(3k\pm 1)^2=9k^2\pm 6k+1$ chia $3$ dư $1$

Vậy ta có đpcm

-----------------------------

Áp dụng vào bài:

TH1: Nếu $a,b$ chia hết cho $3$ thì hiển nhiên $ab(a^2+2)(b^2+2)\vdots 9$

TH1: Nếu $a\vdots 3, b\not\vdots 3$

$\Rightarrow b^2$ chia $3$ dư $1$

$\Rightarrow b^2+3\vdots 3$

$\Rightarrow a(b^2+3)\vdots 9$

$\Rightarrow ab(a^2+3)(b^2+3)\vdots 9$

TH3: Nếu $a\not\vdots 3; b\vdots 3$

$\Rightarrow a^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3$

$\Rightarrow b(a^2+2)\vdots 9$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

TH4: Nếu $a\not\vdots 3; b\not\vdots 3$

$\Rightarrow a^2, b^2$ chia $3$ dư $1$

$\Rightarrow a^2+2\vdots 3; b^2+2\vdots 3$

$\Rightarrow ab(a^2+2)(b^2+2)\vdots 9$

Từ các TH trên ta có đpcm.

 

Flash Dragon
Xem chi tiết
Đỗ Hoàng Nhi
12 tháng 7 2020 lúc 20:20

thx ban

Khách vãng lai đã xóa
Le Anh Thi
21 tháng 4 2021 lúc 16:38

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Khách vãng lai đã xóa