Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tien Man
Xem chi tiết
Lương Thị Mỹ Phụng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 20:16

Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR

a: ta có: ΔPQR vuông tại P

=>\(QR^2=PQ^2+PR^2\)

=>\(QR^2=8^2+6^2=100\)

=>\(QR=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔRPQ vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)

b: Xét tứ giác PNMK có

\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)

=>PNMK là hình chữ nhật

c: Xét ΔRPQ có

M là trung điểm của RQ

MK//RP

Do đó: K là trung điểm của PQ

=>PK=KQ(1)

Ta có: PKMN là hình chữ nhật

=>PK=MN(2)

Từ (1) và (2) suy ra KQ=MN

Ta có: PK//MN
K\(\in\)PQ

Do đó: NM//KQ

Xét tứ giác KQMN có

KQ//MN

KQ=MN

Do đó: KQMN là hình bình hành

=>QN cắt MK tại trung điểm của mỗi đường

mà O là trung điểm của MK

nên O là trung điểm của QN

=>OQ=ON

Xét tứ giác PMQH có

K là trung điểm chung của PQ và MN

=>PMQH là hình bình hành

Hình bình hành PMQH có PQ\(\perp\)MH

nên PMQH là hình thoi

Vua hải tặc
Xem chi tiết
Cả Út
12 tháng 2 2019 lúc 21:31

Anh/chị tự kẻ hình nha :

tam giác MNP cân tại P (gt) => MP = NP (đn) và góc PNM = góc PMN (tc)

góc PQM = góc PQN = 90 do PQ | MN (gt)

=> tam giác MPQ = tam giác NPQ (ch - gn)

b, tam giác MPQ = tam giác NPQ (câu a)

=> MQ = QN (đn) mà Q nằm giữa M và N 

=> Q là trung điểm của MN

c, xét tam giác MIK và tam giác  MQK có : MK chung

góc QMK = góc KMI do MK là pg của góc M (gt)

góc KQM = góc KIM = 90 do ...

=>  tam giác MIK = tam giác  MQK (cgv - gnk)

=> KI = KQ (đn)

=> tam giác KIQ cân tại  K (đn)

Bùi Cẩm Thảo Hiền
Xem chi tiết
Hằng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 19:11

a: Xét ΔPQE và ΔPRD có 

PQ=PR

\(\widehat{QPE}\) chung

PE=PD

Do đó: ΔPQE=ΔPRD

b: Xét ΔMQR có \(\widehat{MQR}=\widehat{MRQ}\)

nên ΔMQR cân tại M

Thảo Nguyễn
Xem chi tiết
Thu Vân
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
30 tháng 4 2020 lúc 10:14

R A M B H Q C D S N P

a) Xét tam giác vuông ABR và ADQ có:

AB = AD (gt)

Góc BAR + góc BAP = 90 độ

Góc DAQ + góc BAP = 90 độ

=> Góc BAR = Góc DAQ

=> Tam giác vuông ABR = tam giác vuông ADQ (cạnh góc vuông – góc nhọn kề)

=> AR = AQ (2 cạnh tương ứng)

=> Tam giác AQR cân tại A.

CMTT ta có tam giác ADS = tam giác ABP

=> AS = AP => Tam giác APS cân tại A.

b) Tam giác AQR cân tại A => Trung tuyến AM đồng thời là đường cao.

=> AM vuông góc với QR => Góc AMH = 90 độ

Tương tự: Tam giác APS cân tại A => Trung tuyến AN đồng thời là đường cao.

=> AN vuông góc với SP => góc ANP = 90 độ hay góc ANH= 90 độ.

Tam giác AQR vuông cân tại A => Góc AQR = góc ARQ = 45 độ => Góc PQH = 45 độ.

Tam giác APS vuông cân tại A => góc ASP = góc APS = 45 độ => góc QPH = 45 độ (đối đỉnh).

Xét tam giác PHQ có: Góc PQH + góc QPH = 45 độ + 45 độ = 90 độ

=> Tam giác PHQ vuông cân tại H => PH vuông góc với PQ

=> góc NHM = 90 độ

Xét tứ giác AMHN có: Góc AMH = góc ANH = góc NHM = 90 độ

=> AMHN là hình chữ nhật (dhnb)

c) Xét tam giác SQR có:

BC vuông góc CD => RC vuông góc SQ => RC là đường cao.

AP vuông góc AR => QA vuông góc RS => QA là đường cao.

Mà RC cắt QA tại P

Vậy P là trực tâm tam giác SQR.

d) Tam giác ANP vuông tại A có trung tuyến AN => AN = SP/2

    Tam giác CSP vuông tại C có trung tuyến CN => CN = SP/2

=> AN = CN => N thuộc trung trực của AC.

CMTT ta có MA = MC => M thuộc trung trực của AC.

Vậy MN là trung trực của AC.

e) Ta có BA = BC (gt) => B thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => B thuộc MN

Tương tự DA = DC (gt) => D thuộc trung trực của AC.

Mà MN là trung trực của AC (cmt) => D thuộc MN

Vậy M, B, N, D thẳng hàng.

Khách vãng lai đã xóa
Nguyễn Quốc Viễn
Xem chi tiết
Trần Ngọc Dũng
20 tháng 2 2021 lúc 18:24
Fuck. Fuck. Fuck. Fuck
Khách vãng lai đã xóa
Nguyễn Thị Hương Ly
Xem chi tiết