Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Takishima Hotaru
Xem chi tiết
Nguyệt Nguyệt
14 tháng 3 2017 lúc 20:32

Vì a+b+c=0 nên

\(a^5+b^5+c^5=a^5+b^5+c^5-a-b-c\)

= \(a\left(a^4-1\right)+b\left(b^4-1\right)+c\left(c^4-1\right)\)

Lại có :

\(a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4+5\right)\)

= \(a\left(a+1\right)\left(a-1\right)\left(a^2-4\right)+5a\left(a+1\right)\left(a-1\right)\)

= \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)+5a\left(a+1\right)\left(a-1\right)\)

Vì : \(a\left(a+1\right)\) là tích của 2 số thực liên tiếp nên chia hết cho 3

\(a\left(a+1\right)\left(a-1\right)\)là tích của 3 số thực liên tiếp nên chia hết cho 3

\(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)là tích của 5 số thực liên tiếp nên chia hết cho 5

Mà (2,3,5) = 1 nên \(a\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)\)chia hết cho 2.3.5=30

Suy ra \(a^5-a\) chia hết cho 30

Cmtt ta được \(b^5-b\)\(c^5-c\) chia hết cho 30

Suy ra \(a^5+b^5+c^5-a-b-c\) chia hết cho 30 hay

\(a^5+b^5+c^5\) chia hết cho 30 khi a+b+c = 0

Dương Tuấn mINH
Xem chi tiết
Dũng Lương Trí
Xem chi tiết
Phạm Thị Thùy Linh
4 tháng 8 2019 lúc 21:31

Ta thấy : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right).\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)

Ta có :\(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số tự nhiên liên tiếp :

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(5\)và cũng \(⋮\)\(6\)( cũng là 3 số tự nhiên liên tiếp )

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(⋮\)\(30\)\(\left(1\right)\)

Ta lại có : \(5\)\(⋮\)\(5\)và \(\left(a-1\right)a\left(a+1\right)\)\(⋮\)\(6\)

\(\Rightarrow5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)\(\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)\(⋮\)\(30\)

Hay \(a^5-a\)\(⋮\)\(30\)

Tương tự \(b^5-b\)và \(c^5-c\)cũng chia hết cho 30 

\(\Rightarrow a^5+b^5+c^5-\left(a+b+c\right)\)\(⋮\)\(30\)

Mà \(a+b+c\)\(⋮\)\(30\)

\(\Rightarrow a^5+b^5+c^5\)\(⋮\)\(30\)\(\left(đpcm\right)\)

Quách Thị Anh Thư
Xem chi tiết
Nguyễn Tấn Tài
16 tháng 1 2017 lúc 19:18

Ta có a+b+c=0 sẽ chia hết cho 30

Và 30=2*3*5

Lại có \(a^2\equiv a\) (mod2) =>\(a^4\equiv a^2\equiv a\) (mod 2)

\(\Rightarrow a^5\equiv a^2\equiv a\) (mod 2)

\(b^3\equiv b\) (mod 3) \(\Rightarrow b^5\equiv b^3=b\) (mod 3)

\(c^5\equiv c\) (mod 5)

Suy ra : \(a^5+b^5+c^5\equiv a+b+c\) (mod 2.3.5)

Vậy \(a^5+b^5+c^5\) sẽ chia hết cho 30

Tẹt Sún
Xem chi tiết
tep.
Xem chi tiết
Đoàn Đức Hà
24 tháng 7 2021 lúc 21:43

Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)

\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)

Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).

\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).

Vậy \(x^5-x\)chia hết cho \(30\).

Ta có: 

\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)

\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)

nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)

mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)

suy ra \(a+b+c+d\)chia hết cho \(30\).

Khách vãng lai đã xóa
Hoàng Phương Lan
Xem chi tiết
Lê Thị Hoài Thi
Xem chi tiết
Nguyễn Xuân Huy
Xem chi tiết
Nguyễn Thanh Hằng
4 tháng 10 2019 lúc 17:09

Ta có :

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^5=-c^5\)

\(\Leftrightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)

\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)

\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)

\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow a^5+b^5+c^5\) chia hết cho \(5abc\left(đpcm\right)\)