cho 1/x +1/y +1/z=3 và 2x=-3y=4z. tìm x,y,z
3x=2y=z và x+y+z=99
2x=3y=-2z và 2x-3y+4z=48
x/0.5=y/0.3=z/0.2 và 2x+3y-4z=34
x-1/3=y-2/4=z-3/5 và x+y+z=30
x+1/3=y+2/-4=z-3/5 và 3x+2y+4z=47
x/4=y/4 và x^2y=100
giúp mình với
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x+y+z-6}{12}=\frac{24}{12}=2\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=10\\z=13\end{cases}}\)
tìm x,y,z bt:
a) x+1/5 = (3y-2)/7 = (2x+3y-1)/6x
b) 1/x + 1/y + 1/z = 3 và 2x=-3y=4z
1/x+1/y+1/z=3 và 2x=-3y=4z
Tìm x;y;z
bạn nào làm đầu tiên mình tick cho
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
tìm x,y,z biết :
a) x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
b) 2x/3=3y/4=4z/5 và x+y+z=49
c) x/2=y/3=z5 và x*y*z = 810
tìm x,y,z biết x(3-1)=2(y+2);4(y+2)=5(z-3) và 2x+3y-4z=205
Sửa đề: 3(x-1)=2(y+2)
Ta có: 3(x-1)=2(y+2)
\(\Leftrightarrow6\left(x-1\right)=4\left(y+2\right)\)
mà 4(y+2)=5(z-3)
nên \(6\left(x-1\right)=4\left(y+2\right)=5\left(z-3\right)\)
\(\Leftrightarrow\dfrac{x-1}{\dfrac{1}{6}}=\dfrac{y+2}{\dfrac{1}{4}}=\dfrac{z-3}{\dfrac{1}{5}}\)
\(\Leftrightarrow\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}\)
mà 2x+3y-4z=205
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{\dfrac{1}{3}}=\dfrac{3y+6}{\dfrac{3}{4}}=\dfrac{4z-12}{\dfrac{4}{5}}=\dfrac{2x-2+3y+6-4z+12}{\dfrac{1}{3}+\dfrac{3}{4}-\dfrac{4}{5}}=\dfrac{205+16}{\dfrac{17}{60}}=780\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x-2}{\dfrac{1}{3}}=780\\\dfrac{3y+6}{\dfrac{3}{4}}=780\\\dfrac{4z-12}{\dfrac{4}{5}}=780\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-2=260\\3y+6=585\\4z-12=624\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=262\\3y=579\\4z=636\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=131\\y=193\\z=159\end{matrix}\right.\)
Vậy: (x,y,z)=(131;193;159)
tìm hai số x và y z biết 1/2x=2/3y=3/4z và x-y-z=100
\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)
\(\frac{x}{2.6}=\frac{2y}{3.6}=\frac{3z}{4.6}\)
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y-z}{12-9-8}=\frac{100}{-5}=-20\)
\(\Rightarrow x=-240;y=-180;z=-160\)
1. x-1/3=y-2/4=z+5/6 và x+y-z=8
2. x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
3. x+1/3=y+2/-4=z-3/5 vad 3x+2y+4z=47
1. Áp dụng TCDTSBN ta có:
$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$
$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$
$\Rightarrow x-1=y-2=z+5=0$
$\Rightarrow x=1; y=2; z=-5$
2.
Có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$
Suy ra:
$x+1=2.1=2\Rightarrow x=1$
$y+3=1.4=4\Rightarrow y=1$
$z+5=6.1=6\Rightarrow z=1$
$
3.
Có:
$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}$
Áp dụng TCDTSBN:
$\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{9+(-8)+20}=\frac{3x+2y+4z-5}{21}=\frac{47-5}{21}=2$
Suy ra:
$x+1=3.2=6\Rightarrow x=5$
$y+2=(-4).2=-8\Rightarrow y=-10$
$z-3=5.2=10\Rightarrow z=13$
Tìm x,y,z biết
a, x-1/2=y-2/3= z-3/4 và 2x+3y-z =50
b, 2x/3=3y/4=4z/5 và x+y+z=49
Bài giải
a, Ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-8}{9}=\frac{45}{9}=5\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=5\cdot2+1=11\\y=5\cdot3+2=17\\z=5\cdot4+3=23\end{cases}}\)
b, Ta có :
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49\cdot\frac{12}{49}=12\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }\hept{\begin{cases}x=12\cdot3\text{ : }2=18\\y=12\cdot4\text{ : }3=16\\z=12\cdot5\text{ : }4=15\end{cases}}\)