Chưng minh rằng:1/3^2+1/4^2+1/5^2+/6^2+....+1/100^2<1/2
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Xét: (1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100) =
(1+1/3+1/5+....+1/99) + (1/2+1/4+1/6+...+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1+1/2+1/3+...+1/50) =
1/51+1/52+1/53+ … + 1/100
Hay:
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Viết lại:
(1+1/3+1/5+ … +1/199) – (1/2+1/4+1/6+ … +1/200) = 1/101+1/102+ … +1/200
Tương tự như trên ta được:
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1/2+1/4+1/6+...+1/200) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1+1/2+1/3+...+1/100) =
1/101+1/102+ … +1/200
Hay:
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1 .Chưng minh rằng
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
Xét: (1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100) =
(1+1/3+1/5+....+1/99) + (1/2+1/4+1/6+...+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1/2+1/4+1/6+...+1/100) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/99+1/100) - (1+1/2+1/3+...+1/50) =
1/51+1/52+1/53+ … + 1/100
Hay:
(1+1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
Viết lại:
(1+1/3+1/5+ … +1/199) – (1/2+1/4+1/6+ … +1/200) = 1/101+1/102+ … +1/200
Tương tự như trên ta được:
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1/2+1/4+1/6+...+1/200) x 2 =
(1+1/2+1/3+1/4+1/5+1/6+....+1/199+1/200) - (1+1/2+1/3+...+1/100) =
1/101+1/102+ … +1/200
Hay:
1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
ai tích mình tích lại
1.Chưng minh rằng (1+/1/3+1/5+....+1/99)-(1/2+1/4+1/6+...+1/100)=1/51+1/52+...+1/100
2.Áp dụng phan 1 để chung minh 1-1/2+1/3-1/4+.....-1/200=1/101+1/102+.......+1/200
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Cho M= 1/1! +1/2! +1/3! +......+ 1/100!
Chưng minh rằng : 3! - M > 4
chứng minh rằng: 1/4^2+1/5^2+1/6^2+1/7^2+......+1/100^2<1/3
1/4^2<1/3*4
1/5^2<1/4*5
...
1/100^2<1/99*100
=>A<1/3-1/4+1/4-1/5+...+1/99-1/100
=>A<1/3-1/100<1/3
Chưng minh rằng :
\(\frac{1.2-1}{2\text{!}}+\frac{2.3-1}{3\text{!}}+\frac{3.\text{4}-1}{\text{4}\text{!}}+...+\frac{99.100-1}{100\text{!}}< 2\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
chứng minh rằng:1/5<1/4^2+1/5^2+1/6^2+...+1/100^2<1/3
Chưng minh rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}<1\)
Chứng minh rằng :
1/4^2+1/5^2+1/6^2+...+1/100^2 < 1/3
Nhanh lên nhé !!! Mình đang vội
Ta có:
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)
\(...\)
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\) \(\left(1\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Đặt \(A=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{3}-\dfrac{1}{100}\)\(< \dfrac{1}{3}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3}\)