CHO TAM GIÁC ABC VUÔNG TẠI B CÓ GÓC BAC=60 ĐỌ. VẼ TIAPHAAN GIÁC AD CUA GOC BAC (D THUỘC BC). TỪ D KẺ DE VUÔNG AC ( E THUỘC AC).CMR
a) AB=AE
b) AD VUÔNG BE
c)DE>AB
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC)
Cho tam giác ABC vuông tại A, kẻ phân giác AD của góc BAC (D thuộc BC). Hạ DE vuông góc với AB (E thuộc AB), DG vuông góc với AC (G thuộc AC). So sánh GC và GD
Bài 1:
Cho tam giác ABC vuông tại B, vẽ AD là phân giác của góc BAC (D thuộc BC). Từ D kẻ DE vuông góc với AC (E thuộc AC). Gọi F là giao điểm của DE và AB
a, CM: Tam giác ABE cân
b, CM: tam giác ADF = tam giác ADC
c, CM: BA + BC > DE + AC
a: Xet ΔABD vuông tại B và ΔAED vuông tại E có
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xet ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
Ch otam giác ABC vuông tại B có góc BAC = 60 độ . Vẽ tia phân giác AD của góc BAC ( D thuộc BC ),Từ D vẽ DE vuông góc AC( E thuộc AC ). chứng minh
a) AB =AE
B) AD vuông góc BE
c) DC> AB
a) do 2 tam giác ABD và ADE là 2 tam giác vuông mà có góc BAD và EAD bằng nhau ( t/chất) và chung AD
nên 2 tam giác này bằng nhau ( ch-gn) nên AB = AE 2 cạnh tương ứng
b) Do AB =AE chứng minh trên nên tam giác ABE cân ở A mà có tia phân giác AD của góc BAC nên AD vuông góc với cạnh đáy BE của tam giác ABE ( tính chất tia phân giác trong tam giác cân )
c) Do góc BCA = 30 độ ( tự tính được do ta biết số đo góc ABC = 90 và BAC = 60 ) mà có tia p/g của BAC nên góc DAC = 1/2 góc BAC nên góc DAC = 30 độ = góc DCA => tam giác DAC cân ở D
=> AD = DC
Do AD>AB (theo tính chất cạnh huyền > cạnh góc vuông ) mà AD = DC nên DC > AB
ĐPCM
( bạn tích đúng cho mình nhé, gõ mỏi hết cả tay =))) )
Bạn chơi minecraft à mình kết bạn với bạn nhé
Cho tam giác ABC vuông tại B ,Vẽ AD là tia phân giác góc BAC (D thuộc BC).Từ D kẻ De vuông góc AC (E thuộc AC).Gọi F là giao điểm của tia DE và AB .a)Chứng minh :tam giác ABE là tam giác cân.b)Tam giác ADF=Tam giác ADC.c) Chứng minh BA+BC>DE+AC
a: Xét ΔABD vuông tại B và ΔAED vuông tại E co
AD chung
góc BAD=góc EAD
=>ΔABD=ΔAED
=>AB=AE
=>ΔABE cân tại A
b: Xet ΔBDF vuông tại B và ΔEDC vuông tại E có
DB=DE
góc BDF=góc EDC
=>ΔBDF=ΔEDC
=>DF=DC
Xét ΔADF và ΔADC có
AD chung
DF=DC
AF=AC
=>ΔADF=ΔADC
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC( D thuộc BC).Từ D kẻ DE vuông góc với AB(E thuộc AB), DF vuông góc với AC( F thuộc AC )
a.CMR: AD là trung trực của EF
b.Trên tia đối của tia DE lấy G sao cho DE = DG.CMR:tam giác CEG là tam giác vuông
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC( D thuộc BC).Từ D kẻ DE vuông góc với AB(E thuộc AB), DF vuông góc với AC( F thuộc AC )
a.CMR: AD là trung trực của EF
b.Trên tia đối của tia DE lấy G sao cho DE = DG.CMR:tam giác CEG là tam giác vuông
Vì tam giác ABC cân tại A suy ra AB= AC, góc B= góc C ( T/c tam giác cân)
Xét tam giác AED và tam giác AFD
có góc AED=góc AFD = 900
góc BAD = góc CAD (GT)
AD chung
suy ra tam giác AED = tam giác AFD (cạnh huyền-góc nhọn)
suy ra DE = DF suy ra D thuộc đường trung trục của EF (1)
Mà AB=AC suy ra A thuộc đường TT của EF (2)
từ (1) và (2) suy ra AD là đường trung trực của EF
b) Xét tam giác ABD và tam giácACD
có AD chung
góc BAD = góc CAD (GT)
AB=AC (GT)
suy ra tam giác ABD = tam giác ACD (c.g.c)
suy ra BD = DC (hai cạnh tương ứng)
Xét tam giác EDB và tam giác GDC
có BD=DC (CMT)
góc EDB = góc CDG (đối đỉnh)
ED = DG (GT)
suy ra tam giác EDB = tam giác GDC (c.g.c)
suy ra góc DEB = góc CGD
mà góc DEB = 900
suy ra góc CGD = 900
suy ra tam giác EGC vuông tại G
Cho tam giác ABC vuông tại A có AB=6cm AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC)
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm,AD là tia phân giác của góc BAC(D thuộc BC).
a)Tính tỉ số DB/DC và độ dài các đoạn thẳng BC,DB,DC.
b)Từ D kẻ DE vuông góc với AB tại E(E thuộc AB).Tính độ dài DE,AE và diện tích tứ giác AEDC
Cho tam giác ABC có AB = AC, tia phân giác của góc BAC cắt BC tại D
a) C/m: tam giác ABD = tam giác ACD. Từ đó suy ra AD vuông góc BC
b)kẻ BE vuông góc AC (E thuộc AC). TRên cạnh AB lấy điểm F sao cho AE = AF. C/m: tam giác AEB = tam giác AFC. Từ đó suy ra CF vuông góc AB.
c)BE cắt AD tại H. C/m: góc AFH = 90độ. Từ dó suy ra ba điểm C,H,F thẳng hàng.
d)C/m: DE = 1/2 BC