Cho tam giác ABC vuông tại a góc b= 60°kẻ tia phân giác góc b cắt AC tại d kẻ dc vuông góc BC a) nêu giả thuyết,kết luận b)chứng mình ∆ ABD=∆EBD c)chứng minh góc ADB=BDE
Cho tam giác ABC vuông tại A, có = 60 o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a. Vẽ hình, nêu giả thuyết, kết luận
b. Chứng minh: ABD = EBD.
c. Chứng minh: =
Cho tam giác ABC vuông tại A có góc C bằng 30°,tia phân giác của góc B cắt AC tại D,kẻ DE vuông góc BC tại E. a) Chứng minh ∆ABD=∆EBD b)Chứng minh tam giác ABE là tam giác đều. c)Chứng minh BD=DC GIÚP MÌNH VỚI Ạ
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
a) Xét `∆ABD` và `∆EBD` ta có :
`BD` chung
`hat (BAD) = hat (BED) ( = 90^o)`
`hat(ABD) = hat (EBD)`
`=> ∆ABD=∆EBD ( ch-gn)`
b) Xét tam giác vuông `ABC` ta có :
`Hat A = 90 độ, hatC = 30 độ`
Mà `hat (A) + hat (C) + hat (B) = 180^o`
`=> hat(B) = 180 - 90 - 30 = 60 độ (1)`
Xét tam giác ABE ta có :
`BA = BE ( vì ∆ABD=∆EBD) =>` ` triangle ABE `cân tại B
Mà `hat(B)= 60 độ => triangle ABC` là tam giác đều
a) Xét ∆ABD và ∆EBD ta có :
BD chung
góc BAD = góc BED ( = 90 độ)
góc ABD = góc EBD ( gt)
=> ∆ABD=∆EBD ( ch-gn)
b) Xét tam giác vuông ABC ta có :
Góc A = 90 độ, góc C = 30 độ
Mà góc A + góc C + góc B = 180 độ
=> góc B = 180 - 90 - 30 = 60 độ (1)
Xét tam giác ABE ta có :
BA = BE ( vì ∆ABD=∆EBD) => tam giác ABE cân tại B
Mà góc B = 60 độ => Tam giác ABE là tam giác đều ( trong tam giác cân, một góc = 60 độ thì tam giác đó là tam giác đều )
cho tam giác abc vuông tại a có ab=6cm ac=8cm. tính bc. kẻ tia phân giác góc b cắt ac tại d , kẻ dc vương góc bc. chứng minh abd=ebd . với góc c=30 độ chứng minh tam giác abe là tam giác dều
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Xét ΔABE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
Cho tam giác ABC vuông tại A có góc C bằng 30° tia phân giác của góc B cắt AC tại D, kẻ DE vuông góc tại E. a)Chứng minh ∆ABD=∆EBD b) Chứng minh tam giác ABE là tam giác đều c) Chứng minh BD=DC GIÚP MÌNH VỚI
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
Cho tam giác ABC vuông tại A . Kẻ tia phân giác BD của góc B ( D thuộc AC ) . Qua D kẻ DE vuông góc BC tại E(ghi giả thiết kết luận và vẽ hình) .
a) Chứng minh AD = DE .
b) Tia ED cắt Tia BA tại F , chứng minh DF = DC .
c) Chứng minh tam giác BFC cân .
Cho tam giác ABC vuông tại A có tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc BC
tại E.
a) Chứng minh tam giác ABD = tam giác EBD, từ đó suy ra tam giác ABE cân
b) Chứng minh AD < DC
c) Tia phân giác của góc EDC cắt BC tại K. Chứng minh AE song song DK
d) Nếu góc ABC = 60 độ. Chứng minh AE = AB.
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
Còn câu c,d thì sao bạn?
cho tam giác ABC vuông tại A, có góc b=60 độ và AB=5 cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E
a/ chứng minh : tam giác ABD = tam giác EBD
b/ chứng minh AD < DC
c/ chứng minh tam giác ABE là tam giác đều
d/ tính độ dài cạnh BC
v b bghghfg fhghfhghfg
Cho tam giác ABC vuông tại A, có B=60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC (EeBC) a. Chứng minh tam giác ABD= tam giác EBD b). Chứng minh tam giác ABE là tam giác đều c). Chứng minh tam giác AEC cân d). Chứng minh độ dài cạnh AC a. Chứng minh: ABD = EBD. b. Chứng minh: ABE là tam giác đều. c. Tính độ dài cạnh BC. d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Cho tam giác ABC vuông tại A , góc B = 60° .Tia phân giác góc B cắt AC ở D. Kẻ AH vuông góc BC (H€BC) ,DE vuông góc BC tại E
a chứng minh tam giác ABD bằng tam giác bde
B Chứng minh E là trung điểm của BC và AD bé hơn DC
C biết AB = 2 cm Tính BC AC