tinh C = 1/1.5 + 1/2.6 + 1/3.7 +...+ 1/46.50
tinh tong :
A =1+2+3+...............+2015
B=1.5+2.6+3.7+.................+100.101
Tinh nhanh: A=1.5+2.6+3.7+...+20.24
A=1.5+2.6+3.7+...+20.24
A=1.(2+3) + 2.(3+3) + 3.(4+3) + ... + 20.(21+3)
A=1.2+3 + 2.3 +6 + 3.4 +9 + ... + 20.21 + 60
A= (1.2+2.3+3.4+...+20.21) + (3+6+9+...+60)
Tính B= 1.2 + 2.3 + 3.4 +...+ 20.21
3.B= 1.2.3 + 2.3.3 + 3.4.3 +...+ 20.21.3
3B= 1.2.3 + 2.3.(4-1) + 3.4. (5-2) + ... + 20.21. (22-19)
3B= 20.21.22 suy ra B= 3080
Tính 3+6+9+...+60= [(60-3):3+1](3+60):2=630
Vậy A= 3080 + 630=3710
1. tính:
a) 1.3+2.4+3.5+4.6+...+n.(n+2)
b) 1.5+2.6+3.7+...+n.(n+4)
c) 12 + 32+52+...+(2n+1)2
cíu t đi =))
a,chứng minh mọi n ϵ N* ta luôn có
1^2 + 2^2 + 3^2 +...+ n^2 = n ( n+1 ) ( 2n+1 ) chia 6
b,Chứng minh rằng A = 1.5 + 2.6 +3.7 +.... + 2023.2027 chia hết cho các số 11, 23 và 2023.
c,Tìm tất cả các số tự nhiên n ( 1 ≤ n ≤ 2000) để biểu thức B = 1.3 + 2.4 +... n ( n + 2 ) chia hết cho 2027.
a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)
- Với \(n=1:\)
\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)
- Với \(n=k:\)
\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)
- Với \(n=k+1:\)
\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)
\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))
Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)
r đáp án đâu :)) t bị ngu lên đây thành bị khờ =))))))))
1.5+2.6+3.7+...+30.34
a,Chứng minh rằng với mọi số tự nhiên n khác 0 ta luôn có:
1²+2²+3²+...+n²=n.(n+1).(2n+1)/6
b,Chứng minh rằng
A=1.5+2.6+3.7+...+2023.2027
chia hết các số 11;23 và 2023
c,Tìm tất cả các số tự nhiên n (1 ≤ n ≤ 2000) để biểu thức B=1.3+2.3+...+n.(n+2) chia hết cho 2027
tính tổng 1.5+2.6+3.7+...+99.103 = ?
trời !!dễ vậy cx hỏi!!pn suy nghĩ thêm đi!!!
A=1.5+2.6+3.7+...+30.34