Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị kiều oanh
Xem chi tiết
lê nguyễn ngọc  khuê
Xem chi tiết

Vào link này nhé !!!

Câu hỏi của Võ Văn Phúc Đường - Toán lớp 7 - Học toán với OnlineMath

lê nguyễn ngọc  khuê
1 tháng 4 2019 lúc 20:46

Mik cần hai cách mà bạn

Lala school
Xem chi tiết
Mai Trung Nguyên
5 tháng 4 2019 lúc 20:08

A B C E D

-Tam giác ABC cân tại A  có BE và CD là 2 đtt

=> AB=AC => AE=AD

Xét tgABE , tgACD có góc A chung , AE=AD,AB=AC

=> ABE=ACD (c g c)

=>BE=CD

-Tam giác ABC có BE và CD là 2 đtt bằng nhau và cắt tại G

=> EG=DG , BG=CG

\(\Delta DGB\),\(\Delta EGC\) có gocDGB = gocEGC ( 2 góc đối đình) EG=DG, BG=CG

=>\(\Delta DGB\)=\(\Delta EGC\)(c.g.c)

=>BD=EC

Xét \(\Delta EBC\)\(\Delta DCB\)  có: BE=CD , BC chung, BD=EC

=>\(\Delta EBC\)=\(\Delta DCB\) (c.c.c)

=>\(\widehat{EBC}=\widehat{DCB}\)

=> TgABC cân tại A (đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 11 2017 lúc 2:04

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

Giả sử ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G.

⇒ G là trọng tâm của tam giác

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

QUẢNG CÁO

Mà BM = CN (theo gt) ⇒ GB = GC ⇒ GM = GN.

Xét ΔGNB và ΔGMC có :

GN = GM (cmt)

GB = GC (cmt)

Giải bài 27 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔGNB = ΔGMC (c.g.c) ⇒ NB = MC.

Lại có AB = 2.BN, AC = 2.CM (do M, N là trung điểm AC, AB)

⇒ AB = AC ⇒ ΔABC cân tại A.

Nguyễn Nguyên An
Xem chi tiết
ngô thị thanh lam
31 tháng 3 2016 lúc 22:24

 Giả sử ∆ABC  có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác  => GB = BM; GC = CN  mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G =>  do đó ∆BCN = ∆CBM vì:  BC là cạnh chung CN = BM (gt)  (cmt) =>   =>  ∆ABC  cân tại A 

Devil
31 tháng 3 2016 lúc 22:31

định lí đảo mà bạn

Nguyễn Nguyên An
31 tháng 3 2016 lúc 22:32

ờ thì mik viết là định lí đảo mà

Võ Văn Phúc Đường
Xem chi tiết
Thương Văn
27 tháng 3 2016 lúc 22:24

sach toán 7 tập 2 bạn ơi

Devil
27 tháng 3 2016 lúc 22:30

định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau

giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB) 

suy ra  B=C và

AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC

xét tam giác DBC và tam giác ECB có:

EB=DC(cmt)

BC(chung)
B=C(tam giác ABC cân tại A)

suy ra tam giac sDBC=ACB(c.g.c)

suy ra EC=BD

You silly girl
27 tháng 3 2016 lúc 22:31

cho mk 1 tk di !!

Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
19 tháng 4 2017 lúc 14:44

Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G

=> G là trọng tâm của tam giác

=> GB = BM; GC = CN

mà BM = CN (giả thiết) nên GB = GC

=> ∆GBC cân tại G => GCB^=GBC^

do đó ∆BCN = ∆CBM vì:

BC là cạnh chung

CN = BM (gt)

GCB^=GBC^ (cmt)

=> NBC^=MCB^ => ∆ABC cân tại A

Nguyễn Văn Phú
Xem chi tiết
Silly Thùy Linh
Xem chi tiết
Phạm Ngọc Hà
3 tháng 4 2016 lúc 20:46

giả sử tam giác ABC có 2 đường trung tuyến BM và CN gặp nhau ở G

=> G là trong tâm của tam giác

-> GB=BM ; GC = CN

mà BM=CN (gt) nên GB = GC

=> tam giác GBC cân tại G

Do đó tam giác BCN=tam giác CBM vì:

BC là cạnh chung

CN = BM (gt)

=> tam giác ABC cân tại A

Nguyễn thị yến giang
3 tháng 4 2016 lúc 21:53

xét tam giác ABD và ACE :

E=D (=90o)

CE=BD (gt)

A:chung 

suy ra tam giác ABD =ACE(ch_gn) 

suy ra góc B=C(t/ư)

xét tam giác EIB&DIC:

E=D(=90o)

IE=ID

B=C

suy ra tam giácEIB=DIC

suy ra IB=IC

suy ra tam giác BIC cân tại I, suy ra B=C

suy ra:đpcm