Bài 2: Tính:
\(\frac{1}{10.12}+\frac{1}{12.14}+\frac{1}{14.16}+...+\frac{1}{48.50}\)
Tính hợp lí (nếu có thể):
\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.50}\)
Đặt \(A=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{48\cdot50}\)
\(A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
\(A=\frac{1}{10}-\frac{1}{50}=\frac{5}{50}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25}\)
Vậy \(A=\frac{2}{25}\)
= \(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
= \(\frac{1}{10}-\frac{1}{50}\)= \(\frac{2}{25}\)
2/10.12+2/12.14+2/14.16+...+2/48.50
=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50
=( 1/10-1/50 )+( 1/12-1/12 )+( 1/14-1/14 )+...+( 1/48-1/48 )
=( 5/50-1/50 )+0+0+...+0
=4/50
=2/25
CHÚC BẠN THÂN YÊU HỌC TỐT ^:^
A= \(\frac{1}{10.12}\)+\(\frac{1}{12.14}\)+ \(\frac{1}{14.16}\)+.........\(\frac{1}{38.40}\)
Ta có: A=\(\frac{1}{10\cdot12}+\frac{1}{12\cdot14}+\frac{1}{14\cdot16}+...+\frac{1}{38\cdot40}\)
=> \(A=\frac{1}{4}\cdot\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{19\cdot20}\right)\)
=\(\frac{1}{4}\cdot\left(\frac{6-5}{5\cdot6}+\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{20-19}{19\cdot20}\right)\)
= \(\frac{1}{4}\cdot\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{19}-\frac{1}{20}\right)\)
= \(\frac{1}{4}\cdot\left(\frac{1}{5}-\frac{1}{20}\right)\)
= \(\frac{1}{4}\cdot\frac{3}{20}=\frac{3}{80}\)
Vậy A= 3/80
A = 1/10 - 1/12 + 1/12 - 1/14 + ....+ 1/38 - 1/40
A = 1/10 - 1/40
A = 4/40 - 1/40
A = 3/40
Chúc bạn học tốt !
Chứng minh: S < \(\frac{1}{10}\).Biết S = \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)
S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)
S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)
S=\(\frac{1}{10}-\frac{1}{100}\)
S=\(\frac{9}{100}\)<\(\frac{1}{10}\)
Tính : 3/10.12+3/12.14+3/14.16+...+3/48.50
Đặt \(A=\frac{3}{10.12}+\frac{3}{12.14}+.....+\frac{3}{48.50}\)
\(A=\frac{3}{2}.\left(\frac{2}{10.12}+\frac{2}{12.14}+......+\frac{2}{48.50}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{12}+....+\frac{1}{48}-\frac{1}{50}\right)\)
\(A=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{50}\right)\)
\(A=\frac{3}{2}.\frac{2}{25}\)
\(A=\frac{3}{25}\)
3/10.12+3/12.14+............+3/48.50
=3/2.(2/10.12+2/12.14+..........+2/48.50)
=3/2(2/10-2/12+2/12-2/14+......+2/48-2/50)
=3/2.(2/10-2/50)
=3/2.4/25
=6/25
(1). Tìm số tự nhiên n để biểu thức \(\dfrac{2n}{n-2}\) nhận giá trị nguyên.
(2). Thực hiện phép tính: \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\)
Cảm ơn ạ!
(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì 2n⋮n-2
2n-4+4⋮n-2
2n-4⋮n-2⇒4⋮n-2
n-2∈Ư(4)⇒Ư(4)={1;-1;2;-2;4;-4}
n∈{3;1;4;0;6;-2}
(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{48.50}\)
=\(\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+...+\dfrac{2}{48.50}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)
=\(\dfrac{3}{2}.\dfrac{2}{25}\)
=\(\dfrac{3}{25}\)
Giải:
(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì \(2n⋮n-2\)
\(2n⋮n-2\)
\(\Rightarrow2n-4+4⋮n-2\)
\(\Rightarrow4⋮n-2\)
\(\Rightarrow n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-2 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -2 | 0 | 1 | 3 | 4 | 6 |
Kết luận | loại | t/m | t/m | t/m | t/m | t/m |
Vậy \(n\in\left\{0;1;3;4;6\right\}\)
(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\)
\(=\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{48.50}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)
\(=\dfrac{3}{2}.\dfrac{2}{25}\)
\(=\dfrac{3}{25}\)
Chúc bạn học tốt!
(1) Để biểu thức \(\dfrac{2n}{n-2}\) nguyên thì \(2n⋮n-2\)
\(\Leftrightarrow4⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{3;1;4;0;6;-2\right\}\)
3 phần 10.12 + 3 phần 12.14+ 3 phần 14.16 + ...+ 3 phần 48.50
tính hợp lí
=3/2(2/10.12+2/12.14+...+2/48.50)
=3/2(1/10-1/12+1/12-1/14+...+1/48-1/50)
=3/2(1/10-1/50)
=3/2 . 2/25 =3/25
Đặt phép tính trên là A
Ta có:
A=3/10*12+3/12*14+3/14*16+...+3/48*50
A*2/3=2/10*12+2/12*14+2/14*16+...+2/48*50
A*2/3=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50
A*2/3=1/10-1/50
A*2/3=2/25
A=2/25:2/3
A=3/25
Vậy A=3/25
Nếu đúng thì k cho mình nha
\(\frac{3}{10.12}+\frac{3}{12.14}+\frac{3}{14.16}+...+\frac{3}{48.50}\)
\(=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{50}\right)\)
\(=\frac{3}{2}.\frac{2}{25}\)
\(=\frac{3}{25}\)
D=\(\frac{2}{25.27}\)+\(\frac{2}{10.12}\)+\(\frac{2}{12.14}\)+...+\(\frac{2}{46.48}\)+\(\frac{2}{48.50}\)
TÌM D
\(D=\frac{2}{25.27}+2\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\right)\)
\(D=2.\left(\frac{1}{25}-\frac{1}{27}\right)+2\left(\frac{1}{10}-\frac{1}{50}\right)\)
\(D=2.\frac{2}{675}+2.\frac{2}{25}\)
\(D=2.\left(\frac{2}{675}+\frac{2}{25}\right)\)
\(D=2.\frac{56}{675}\)
\(D=\frac{112}{675}\)
Study well
tính tổng S= \(\frac{1}{5.6}\)+\(\frac{1}{10.9}\)+\(\frac{1}{15.12}\)+....+\(\frac{1}{3350.2013}\)
cho biểu thức S= \(\frac{2}{10.12}\)+\(\frac{2}{12.14}\)+\(\frac{2}{14.16}\)+...+\(\frac{2}{98.100}\). Chứng minh S < \(\frac{1}{10}\)
S=1/5.6+1/10.9+1/15.12+...+1/3350.2013
=(1/5).(1/3).(1/1.2+1/2.3+1/3.4+...+1/670.671)
=(1/15). (1-1/2+1/2-1/3+...+1/670-1/671)
=(1/15). (1-1/671)
=1/15.670/671
=134/2013
Cho A= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.............+\frac{1}{99.100}\)
VÀ: B=\(\frac{1}{2.4}+\frac{1}{6.8}+\frac{1}{10.12}+\frac{1}{14.16}+...........+\frac{1}{198.200}\)
KHI ĐÓ TỈ SỐ \(\frac{A}{B}\)= ??????????????
TICK 2 CÁI LUÔN