Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đăng
Xem chi tiết
Băng Dii~
2 tháng 1 2017 lúc 10:24

Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương

Huỳnh Phan Yến Nhi
2 tháng 1 2017 lúc 10:55

Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)

Theo đề bài, ta có :

       \(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)

\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)

\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )

Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương 

Sakuraba Laura
23 tháng 1 2018 lúc 17:19

Gọi 4 số tự nhiên liên tiếp đó là n, n + 1, n + 2, n + 3

Ta có: 

n(n + 1)(n + 2)(n + 3) + 1

= [n(n + 3)] . [(n + 1)(n + 2)] + 1

= (n2 + 3n) . [(n + 1).n + (n + 1).2] + 1

= (n2 + 3n) . (n2 + n + 2n + 2) + 1

= (n2 + 3n) . [(n2 + 3n) + 2] + 1

= (n2 + 3n)2 + 2(n2 + 3n).1 + 12

= (n2 + 3n + 1)2

=> n(n + 1)(n + 2)(n + 3) + 1 là số chính phương

Vậy tích của 4 số tự nhiên liên tiếp cộng với 1 là số chính phương.

Giang Trần
Xem chi tiết
Phương
Xem chi tiết
Linh Xinh xxx
Xem chi tiết
Nguy duc tam
Xem chi tiết
nguyen van dung
9 tháng 6 2017 lúc 16:03

Giả sử tồn tại n để 2n -1 =a2

\(\Rightarrow a\)lẻ. Khi đó: a- 1 = 2n - 2

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)=2\left(2^{n-1}-1\right)\)

Vì a lẻ \(\Rightarrow a=2k+1\Rightarrow2k\left(2k+2\right)=2\left(2^{n-1}-1\right)\Rightarrow4k\left(k+1\right)=2\left(2^{n-1}-1\right)\)(vô lý)

Vậy với mọi n thì 2n-1 không là số chính phương

nguyen van dung
9 tháng 6 2017 lúc 16:20

phải có điều kiện \(n>1\)nữa

nguyen van dung
9 tháng 6 2017 lúc 16:21

câu kết luận sửa lại nha

nguyễn trung thông
Xem chi tiết
Kiệt Nguyễn
15 tháng 3 2019 lúc 9:53

Bạn ghi thế khó hiểu quá mk sửa lại nhé.

\(A=1+3+5+7+...+\left(2n-1\right)\)

\(\Rightarrow\) Số số hạng của A là:

             \(\frac{\left(2n-1\right)-1}{2}+1=n\) ( số hạng )

\(\Rightarrow1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=n^2\) là một số chính phương .

Vậy \(A=1+3+5+7+...+\left(2n-1\right)\) với mọi n thuộc N* luôn là số chính phương.

Lee knight
Xem chi tiết
Phí Thị Thanh Duyên
10 tháng 12 2023 lúc 21:47

mẹ mày béo

Citii?
10 tháng 12 2023 lúc 21:54

@Phí Thị Thanh Duyên không bình luận xúc phạm nha bạn.

Lee knight
10 tháng 12 2023 lúc 21:57

ban giải giúp mk đi dù mình bt r

 

Mai Chi
Xem chi tiết
Đỗ Ngọc Hải
20 tháng 8 2015 lúc 12:35

Ta có:

\(B=10^n.4\left(\frac{10^n-1}{9}\right)+8\left(\frac{10^n-1}{9}\right)+1=\frac{10^n.4.\left(10^n-1\right)+8\left(10^n-1\right)+9}{9}=\frac{4.10^{2n}-4.10^n+8.10^n-8+9}{9}=\frac{\left(2.10^n\right)^2+4.10^n+1}{9}\)

\(=\left(\frac{2.10^n+1}{3}\right)^2\)

Vậy B là số chính phương

Ag.Tzin^^
Xem chi tiết
Lê Cẩm Vân
7 tháng 7 2019 lúc 20:18

bài này mình làm trong vở ,mình đã chụp ảnh lại lời giải,bạn chịu khó mở trang của mình ra xem nha

Bạn tham khảo bài toán số 21 nha : https://olm.vn/hoi-dap/detail/11112433588.html

~ Học tốt ~

T.Ps
7 tháng 7 2019 lúc 20:19

#)Giải :

Ta có : 

\(a=111...11\)(2n chữ số 1)

\(b=111..11\)(n + 1 chữ số 1)

\(c=666...66\)(n chữ số 6)

\(\Rightarrow a+b+c+8=111...11+111...11+666...66+8\)

\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+\frac{72}{9}\)

\(=\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

\(=\frac{\left(10^n\right)^2+10.10^n+6.10^n-6+70}{9}\)

\(=\frac{\left(10^n\right)^2+16.10^n+64}{9}=\left(\frac{10^n+8}{3}\right)^2\)

\(\Rightarrow a+b+c+8\)là số chính phương (đpcm)