Chứng minh \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2015}{2016!}<1\)
Cho M=\(\frac{1}{4}-\frac{2}{4^2}+\frac{3}{4^3}-\frac{4}{4^4}+...+\frac{2015}{4^{2015}}-\frac{2016}{4^{2016}}\).Chứng minh M<\(\frac{4}{25}\)
một thửa ruộng hình bình hành có tổng đáy và chiều cao 96m . Cạnh đáy bằng 3/3 chiều cao
A. Tính diện tích thửa ruộng đó.
B.Người ta trồng rau trên thửa ruộng ,cứ 2m vuông thu được 6kg .Tính số rau thu được
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
cho E=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\).Chứng minh rằng:E <\(\frac{3}{16}\)
Cho biểu thức sau: \(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+.....+\frac{2015}{5^{2015}}+\frac{2016}{5^{2016}}\)
Chứng minh 1/4 < P< 1/3
Chứng minh rằng:\(\frac{43}{44}\le\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\le\frac{44}{45}\)
chứng minh S = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
1/1-1/2+1/3-1/4+...+1/2015-1/2016
S=1-1/2+1/3-1/4+...+1/2015-1/2016
S=1-1/2016
S=2015/2016
Cho \(E=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\) . Chứng minh rằng \(E< \frac{3}{16}\)
Bài cuối đề thi học kỳ 2 môn toán trường mình đó , giải đi mk tk cho.
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}< 1\) 1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(< 1-\frac{1}{2016}< 1\left(đpcm\right)\)
Cho E = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\)
Chứng minh rằng :E < \(\frac{3}{16}\)