Cho M=\(\frac{1}{4}-\frac{2}{4^2}+\frac{3}{4^3}-\frac{4}{4^4}+...+\frac{2015}{4^{2015}}-\frac{2016}{4^{2016}}\).Chứng minh M<\(\frac{4}{25}\)
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
Cho biểu thức sau: \(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+.....+\frac{2015}{5^{2015}}+\frac{2016}{5^{2016}}\)
Chứng minh 1/4 < P< 1/3
cho E=\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\).Chứng minh rằng:E <\(\frac{3}{16}\)
chứng minh S = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}< 1\) 1
Chứng minh rằng :
\(\frac{2015}{4034}< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)
Giúp vs ak
Cho \(E=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\) . Chứng minh rằng \(E< \frac{3}{16}\)
Bài cuối đề thi học kỳ 2 môn toán trường mình đó , giải đi mk tk cho.
Cho E = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{2015}{3^{2015}}-\frac{2016}{3^{2016}}\)
Chứng minh rằng :E < \(\frac{3}{16}\)