Cho 3 đa thức
f(x)= 2x4 —3x2 +5—x + 5x3
g(x)= x2 (1—2x2) + 8 — 2x3
h (x)= 3— x2(x +4)
a) thu gọn đa thức, xắp xếp theo lũy thừa giảm dần của biến
b) Tính f(x) + g(x) — h(x)
c) Tính f(x) — g(x) + h(x)
Cho hai đa thức f(x) = 5 +3x2 – x - 2x2 và g(x) = 3x + 3 – x – x2 a/ Thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến. b/ Tính h(x) = f(x) + g(x).
Cho hai đa thức f(x) = 5 +3x2 – x - 2x2 và g(x) = 3x + 3 – x – x2
a/ Thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến.
b/ Tính h(x) = f(x) + g(x).
a)
f(x) = x2 - x + 5
g(x) = -x2 + 2x + 3
b)
h(x) = f(x) + g(x) = x2 - x + 5 - x2 + 2x + 3
= x + 8
Bài 1:
f(x)=2x4+3x2-x+1-x2-x4-6x3
g(x)=10x2+3-x4-4x2+4x-2x2
a,Thu gọn đa thức f(x).g(x) và sắp xếp các hạng tử của mỗi đa thức lũy thừa giảm dần của biến
b,Tính f(x)+g(x)
c,Gọi h(x)=f(x)+g(x),tìm nghiệm của đa thức h(x)
Bài 2:
P(x)=x99-100x98+100x97-100x96+...+100x-1
Tính P(99)
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
Cho các đa thức:
F(x)=4x4-2+2x3+2x4-5x+4x3-9
G(x)=6x4+6x3-x2-5x-27
a) Thu gọn và sắp xếp các hạng tử F(x) theo lũy thừa giảm của biến
b) Tính K(x)=F(x) + G(x)
c) Gọi H(x)=F(x) - G(x). Chứng minh đa thức H(x) vô nghiệm
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
a)f(x)=2x2(x-1)-5(x+2)-2x(x-2)+x2(2x-3)-x(x+1)-(3x-2)
a)thu gọn và sắp xếp f(x) và (g) theo lũy thừa giảm dần của biến
b)tính h(x)=f(x)-g(x) và tìm nghiệm của h(x)
cho hai đa thức:
A(x) = x5 – 3x2 + 7x4 – 9x3 + x2 – ¼ x
B(x) = 5x4 – x5 + x2 – 2x3 +3x2 – ¼
a, thu gọn và sắp xếp đa thức trên lũy thừ giảm dần của 1 biến
b, tính f(x) + A(x) + B(x); g(x) = A(x) – B(x)
c, tính giá trị của đa thức g(x) tại x = -1
b)
Sửa đề: f(x)=A(x)+B(x)
Ta có: f(x)=A(x)+B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
\(=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
a) Ta có: \(A\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(B\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) Ta có: G(x)=A(x)-B(x)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x+x^5-5x^4+2x^3-4x^2+\dfrac{1}{4}\)
\(=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)
f(x)=x3−3x2+2x−5+x2,g(x)=−x3−5x+3x2+3x+4.a.thu gọn các đa thức ên và sắp xếp theo lũy thừa giảm dần của biến.b) tính h(x)+g(x)và q(x)-2.g(x) c) tìm nghiệm của đa thức h(x)
a: f(x)=x^3-2x^2+2x-5
g(x)=-x^3+3x^2-2x+4
b: Sửa đề: h(x)=f(x)+g(x)
h(x)=x^3-2x^2+2x-5-x^3+3x^2-2x+4=x^2-1
c: h(x)=0
=>x^2-1=0
=>x=1 hoặc x=-1
Cho hai đa thức: f(x) = -x5 - 7x4 – 2x3 + x2 + 4x + 9 ; g(x) = x5 + 7x4 + 2x3 + 2x2 – 3x – 9
a) Sắp xếp các đa thức theo luỹ thừa giảm dần của biến
b)Tính tổng h(x) = f(x) + g(x) c) Tìm nghiệm của h(x)
a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9
g(x)=x^5+7x^4+2x^3+2x^2-3x-9
b: h(x)=3x^2+x
c: h(x)=0
=>x=0; x=-1/3
Cho hai đa thức: f(x) = -x5 - 7x4 – 2x3 + x2 + 4x + 9 ; g(x) = x5 + 7x4 + 2x3 + 2x2 – 3x – 9
a) Sắp xếp các đa thức theo luỹ thừa giảm dần của biến
b)Tính tổng h(x) = f(x) + g(x) c) Tìm nghiệm của h(x)
Bài 10: Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1; g(x) = x3 + x – 1; h(x) = 2x2 - 1
a) Tính: f(x) - g(x) + h(x) b) Tìm x sao cho f(x) - g(x) + h(x) = 0
Cho 2 đa thức
f(x)=-x5+6x3+8x2+12x+x5+\(\dfrac{2}{3}+2x^{4^{ }}+\dfrac{1}{3}\)
g(x)=2x4+6x3+17x2+12x-26
1. Thu gọn và sắp xếp f(x) theo lũy thừa giảm của biến
2. Tính h(x)=f(x)-g(x)
2. Tìm nghiệm h(x)
1.
\(f\left(x\right)=2x^4+6x^3+8x^2+12x+1\)
2.
\(h\left(x\right)=\left(2x^4+6x^3+8x^2+12x+1\right)-\left(2x^4+6x^3+17x^2+12x-26\right)\)
\(=-9x^2+27\)
3.
\(h\left(x\right)=0\Leftrightarrow-9x^2+27=0\)
\(\Leftrightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)