Tìm x:
3x(x - 16) - (x - 16) = 0
Tìm x biết
( x + 1/2 )^2 -1/16 =0
( 3x + 1/2 )^2 + 25/16 = 0
Ta có: \(\left(x+\frac{1}{2}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
Mà \(\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
Vậy ....
\(\left(3x+\frac{1}{2}\right)^2+\frac{25}{16}=0\)
\(\Rightarrow\left(3x+\frac{1}{2}\right)^2=\frac{-25}{16}\)
Vì \(\left(3x+\frac{1}{2}\right)^2\ge0\left(\forall x\in Z\right)\)
Nên x thuộc rỗng (không có giá trị của x)
a) (x + 1/2)^2 - 1/16 = 0
(x+1/2)^2 = 1/16 = (1/4)^2 = (-1/4)^2
TH1: x + 1/2 = 1/4
x = -1/4
TH2: x + 1/2 = -1/4
x = -3/4
KL:...
b) (3x+1/2)^2 + 25/16 = 0
(3x + 1/2)^2 = -25/16
=> không tìm được x
Tìm x biết:
1,
a,3x(x+1) - 2x(x+2) = -x-1
b,2x(x-2020) - x+2020 = 0
c,(x-4)2 - 36 = 0
d,x2 + 8x - 16 = 0
e,x(x+6) - 7x - 42 = 0
f,25x2 - 16 = 0
2,
a,3x3 - 12x = 0
b,x2 + 3x - 10 = 0
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Bài 1: tìm x
a, (3x-5)2 - (x-1)2 = 0
b, 16(2-3x) + x2(3x-2) =0
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
Biết 2/3x(x^2-16)=0 . Các số x tìm được là A.-1 B.0;16;-16 C.0;4 D.4;-4
Lời giải:
$\frac{2}{3}x(x^2-16)=0$
$\Leftrightarrow x=0$ hoặc $x^2-16=0$
$\Leftrightarrow x=0$ hoặc $(x-4)(x+4)=0$
$\Leftrightarrow x=0$ hoặc $x-4=0$ hoặc $x+4=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 4$
Không có đáp án nào đúng.
tìm nghiệm của đa thức
a,2x-1=0
b,4x²-16=0
c,x²-2x=0
d,(x-1).(x²-4)=0
e,x³+3x=0
f,x²+3x-4=0
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
a) \(2x-1=0\)
\(2x\) \(=1\)
\(x\) \(=1:2\)
\(x\) \(=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\) là nghiệm của đa thức \(2x-1\)
b) \(4x^2-16=0\)
\(4x^2\) \(=16\)
\(x^2\) \(=16:4\)
\(x^2\) \(=4\)
\(x\) \(=\overset{-}{+}\) \(2\)
Vậy \(x=-2\) hoặc \(x=2\) là nghiệm của đa thức \(4x^2-16\)
c) \(x^2-2x=0\)
\(x.x-2x=0\)
\(x.\left(x-2\right)=0\)
⇒ \(x=0\) hoặc \(x-2=0\)
⇒ \(x=0\) hoặc \(x\) \(=0+2=2\)
Vậy \(x=0\) hoặc \(x=2\) là nghiệm của đa thức \(x^2-2x\)
d) \(\left(x-1\right).\left(x^2-4\right)=0\)
\(\left(x-1\right).\left(x-2\right).\left(x+2\right)=0\)
\(\left\{{}\begin{matrix}x-1=0=0+1=1\\x-2=0=0+2=2\\x+2=0=0-2=-2\end{matrix}\right.\)
Vậy \(x=1\); \(x=2\) hoặc \(x=-2\) là nghiệm của đa thức \(\left(x-1\right).\left(x^2-4\right)\)
e) \(x^3+3x=0\)
\(x.x.x+3x=0\)
\(x.\left(x^2+3\right)=0\)
⇒ \(x=0\) hoặc \(x^2+3=0\)
⇒ \(x=0\) hoặc \(x^2\) \(=0+3\)
⇒ \(x=0\) hoặc \(x^2\) \(=3\) (Không bằng 0)
Vậy \(x=0\) là nghiệm của đa thức \(x^3+3x\)
f) \(x^2+3x-4=0\)
⇒ \(x.\left(x+1\right)+4\left(x-1\right)=0\)
⇒ \(\left(x-1\right).\left(x+4\right)=0\)
⇔\(\left[{}\begin{matrix}x-1=0=0+1=1\\x+4=0=0-4=-4\end{matrix}\right.\)
Vậy \(x=1\) và \(x=-4\) là nghiệm của đa thức \(x^2+3x-4\)
Tìm x biết
a) x − 1 6 − 6 16 = 25 %
b) 3 x − 1 − 1 2 x + 5 = 0
Tìm x
-16 + 23 + x = - 162x – 35 = 153x + 17 = 12│x - 1│= 0-13 .│x│ = -261,-16+23+x=-16
=>23+x=-16-16
=>23+x=-32
=>x=-32-23
=>x=-55
2,2x-35=15
=>2x=15+35
=>2x=50
=>x=25
3,3x+17=12
=>3x=12-17
=>3x=-5
=>ko có x thỏa mãn
4,|x-1|=0
=>x-1=0
=>x=1
5,-13.|x|=-26
=>|x|=-26:-13
=>|x|=2
=>x=2 hoặc -2
1. -16+23+x=-16
23+x=(-16)-(-16)
23+x=(-16)+16
23+x=0
x=0-23
x=-23
2. 2x-35=15
2x=15+35
2x=50
x=50:2
x=25
3. 3x+17=12
3x=12-17
3x=-5
x=(-5):3
x=-5/3
4. /x-1/=0
/x/=0+1
/x/=1
=>x=1 hoặc x=-1
5. -13./x/=-26
/x/=(-26):(-13)
/x/=2
=>x=2 hoặc x=-2
tìm x
a, -16+23+x=-16
b, 2x-35=15
c, 3x+17=12
d,|x-1| =0
e, -13.|x|=-26
a)-16+23+x=-16
7+x=-16
x=-16-7
x=-23
b)2.x-35=15
2.x=15+35
2.x=50
x=50:2
x=25
c)3.x+17=12
3.x=12-17
3.x=-5
x=-5:3
x=-1,(6)
d)Ix-1I=0
IxI=0+1
IxI=1
=>x=1 hoặc x=-1
e)-13.IxI=-26
IxI=-26:(-13)
IxI=2
=>x=2 hoặc x=-2