n^5 +11n +12 chia hết cho 6
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
1. n^3 + 11n chia hết cho 6
2. mn ( m^2 - n^2 ) chia hết cho 3
3. n ( n + 1 )( 2n + 1 ) chia hết cho 6
4. n^2 ( n^4 - 1) chia hết cho 60
5. mn ( m^4 - n^4 ) chia hết cho 30
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
Chứng minh : n^5-11n chia hết cho 5
Chứng minh :n^3+23n chia hết cho 5
Chứng minh rằng với n ∈ N * : n 3 + 11 n chia hết cho 6.
Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
n^3+11n chia hết cho 6
n^3+11n=n^3-n+12n
=(n-1)n(n+1)+12n
vậy n^3+11n luôn chia hết cho 6, với mọi n
CMR m+11n chia hết cho 12 thì 9m+3n chia hết cho 12
Ta có : m +11n \(⋮\) 12
<=> 9m + 99n \(⋮\) 12
Mà [( 9m + 99n) - (9m +3n) ] = 96n \(⋮\) 12
Vì 9m + 99n \(⋮\) 12 ; 96n \(⋮\) 12
Nên 9m+3n \(⋮\)12 ( đpcm)
CMR m+11n chia hết cho 12 thì 9m+3n chia hết cho 12
Chứng minh rằng n^3 +11n chia hết cho 6
n^3+11n
=n^3-n+12n
=(n-1)n(n+1)+12n
chia hết cho 6 với mọi n € Z
Ta có \(n^3+11n\)=\(n^3-n+12n\)
\(=n(n^2-1)+12n\)
\(=(n-1)(n+1)n+12n\)
Vì n là số nguyên nên \((n-1)(n+1)n\) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6
\(\Rightarrow\)12n cũng chia hết cho 6.
\(\Rightarrow\)\((n-1)(n+1)n+12n\) chia hết cho 6
Vậy \(n^3+11n\) chia hết cho 6 (đpcm)
Chứng minh: n3+11n chia hết cho 6 ( n thuộc Z )
Ta có: n3+11n
= n3-n+12n
= n(n2-1)+12n
=(n-1)(n+1)n+12n
Vì n-1, n, n+1 là tích 3 số nguyên liên tiếp nên n(n-1)(n+1) chia hết cho 6.
Mà 12n chia hết cho 6
=>n3+11n chia hết cho 6
ta co:n^3+11n
=n^3-n+12n
=n(n^2-1)+12n
=(n-1)(n+1)n+12n
CMR m+11n chia hết cho 12 thì 9m+3n chia hết cho 12
giúp mình với !!!
\(\left(m+11n\right)⋮12\Rightarrow-3\left(m+11n\right)⋮12\)
\(\Leftrightarrow\left(-3m-33n+12m+36n\right)⋮12\)
\(\Leftrightarrow\left(9m+3n\right)⋮12\)