Cho ΔABC vuông tại A có AH là đường cao, biết AB = 15cm, AC=20cm, BC = 25cm. Gọi E là trung điểm của AH, trên tia BA lấy điểm D sao cho điểm A là trung điểm của BD. DH cắt AC và CE lần lượt tại I và K. Chứng minh: DI.DK + CI.CA = CD2.
Bài 1: Cho 2 tam giác vuông, ΔABC vuông tại A, MNP vuông tại M. Biết ΔABC = ΔMNP, AB= 20cm, AC= 15cm. Tính các cạnh của ΔMNP
Bài 2: Cho ΔABC có AB=AC. Gọi H là trung điểm của cạnh BC a) Chứng minh ΔABH = ΔACH b) Chứng minh AH vuông ∠ BC c) Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Chứng minh ΔHAD = ΔHAE d) Gọi K là trung điểm của DE. Chứng minh 3 điểm A, H, K thẳng hàng
ANH CHỊ GIÚP EM VỚI CHIỀU EM NỘP RỒI
Cho tam giác ABC vuông tại A có AH là đường cao,biết AB=15cm,BC=25cm.
1) Tính AC.
2) Chứng minh tam giác HAC~tam giác ABC.Tính HA,HC,HB.
3) Chứng minh AH^2=HB*HC.
4) Gọi E là trung điểm AH,trên tia BA lấy điểm D sao cho A là trung điểm BD.
a) tính và so sánh hai tỉ số: BH/AE và BD/AC.
b) Chứng minh tam giác BHD~tam giác AEC.
5) DH cắt AC và CE lần lượt tại I và K. Chứng minh DI*DK+CI*CA=CD^2.
Các bạn giúp mình với,giờ mình chỉ cần câu 4 với 5 nữa thôi,gấp lắm,cảm ơn nhiều.
Cho tam giác ABC vuông tại A, đường cao AH, biết AB=15cm, AC=20cm. a) Tính BC, AH. b) Trên đoạn HC lấy D sao cho HD=HB. Tính tanADH và chứng minh: HD.HC=HA^2. c) Trên tia AH lấy E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh: HF vuông FO d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M.CM: AB/AM + AD/AS= AE.AK
Cho tam giác ABC vuông tại A , đường cao AH , Trên tia đối của BC lấy điểm D sao cho BD = BH . Trên tia đối của CB lấy điểm E sao cho CE = CH . Gọi M và N lần lượt là trung điểm của CD VÀ BE . Hãy so sánh AB + AC với BC + MN
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
bạn đăng từng bài lên 1 đi
mik giải dần cho
Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
Cho ΔABC cân tại A, M là trung điểm của AB. Trên tia đối tia MC lấy điểm D sao cho DM = MC. Kẻ MN // BC (N ϵ AC). Gọi H là trung điểm của BC, 2 đường thẳng BN và AD cắt nhau tại E. Chứng minh 3 đường thẳng AH,BD,CE cùng đi qua một điểm.
Xét tứ giác ADBC có
M la trung điểm chung của AB và DC
nên ADBC là hình bình hành
=>góc ADB=góc ACB
Xét ΔABC có
MN//BC
AM/AB=1/2
=>N là trung điểm của AC
Xét ΔNBC và ΔNEA có
góc NCB=góc NAE
NC=NA
góc BNC=góc ENA
=>ΔNBC=ΔNEA
=>NB=NE
=>AECB là hình bình hành
=>CE=AB=AC=BD và góc AEC=góc ABC
=>góc AEC=góc ADB
Gọi giao của BD và CE là K
Xét ΔKDE có góc KDE=góc KED
nên ΔKDE cân tại K
=>KD=KE
=>KB=KC
=>K nằm trên trung trực của BC
mà AH là trung trực của BC
nên A,H,K thẳng hàng
Cho ABC vuông tại A có AB < AC. Vẽ AH vuông góc với BC tại H. Vẽ HI vuông góc với AB tại I. Trên tia HI lấy điểm D sao cho I là trung điểm của DH
a) Chứng minh:ADI = AHI
. b) Chứng minh: AD BD
. c) Cho BH = 9cm và HC = 16cm. Tính AH.
d) Vẽ HK vuông góc với AC tai K và trên tia HK lấy điểm E sao cho K là trung điểm của HE.
Chứng minh: DE < BD + CE.
cho tam giác ABC vuông tại A có AB<AC. vẽ AH vuông góc BC tại H. Vẽ HI vuông góc AB tại I. Trên tia HI lấy điểm D sao cho I là trung điểm của DH:
a, CM tam giác ADI=tam giac AHI
b, CM AD vuông góc với BD
c, cho BH=9 cm và CH=16 cm. Tính AH
d, vẽ HK vuông góc với AC tại K trên tia HK lấy điểm E sao cho K là trung điểm của HE. CM DE<BD+CE
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm