Cho hai số a,b thoả mãn a\(a^2+b^2=4a+2b+540\)Tính gía trị lớn nhất của biểu thức P= \(23a+4b+2013\)
cho 2 số a,b thỏa mãn \(a^2+b^2=4a+2b+540\) tìm giá trị lớn nhất của \(23a+4b+2013\)
Bỏ số 2013 trong biểu thức cần tìm GTLN cho đơn giản!
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
Đặt \(a-2=x;\text{ }b-1=y\text{ }\Rightarrow x^2+y^2=545.\)
\(P=23\left(x+2\right)+4\left(y+1\right)+2013=23x+4y+50\)
Ta có: \(\left(A^2+B^2\right)\left(X^2+Y^2\right)-\left(AX+BY\right)^2=\left(AY-BX\right)^2\ge0\)
\(\Rightarrow\left(A^2+B^2\right)\left(X^2+Y^2\right)\ge\left(AX+BY\right)^2\)
Dấu bằng xảy ra khi \(AY-BX=0\Leftrightarrow AY=BX\)
Áp dụng: \(\left(23.x+4.y\right)^2\le\left(23^2+4^2\right)\left(x^2+y^2\right)=545.545=545^2\)
\(\Rightarrow23x+4y\le545\)
Dấu bằng xảy ra khi \(\int^{23y=4x}_{23x+4y=545}\Leftrightarrow\int^{x=23}_{y=4}\)
\(\Rightarrow maxP=545+50=595\)
Cho hai số a,b thỏa mãn \(a^2+b^2=4a+2b+540\)
Giá trị lớn nhất của biểu thức \(23a+4b+2013\) bằng
1)cho hai số a,b thoả a2+b2=4a+2b+540
tính giá trị lớn nhất của bt P=23a+4b+2013
2)gọi A là điểm chính giữa của nửa đường tròn tâm O,bán kính R=2,dây BCvuông góc với OAtại trung điểm của OA.M là điểm chính giữa cung AC. độ lớn của MB+MC bằng......(nhập kết quả làm tròn đến số thập phân thứ hai)
mình đánh nhầm sửa lại nhé
maxp=2068\(\Leftrightarrow\)\(\Leftrightarrow\Leftrightarrow\)\(\Leftrightarrow\) a=25;b=5
1)maxP=2068\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) khi và chỉ khi a=25 ; b=5
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, Cho \(\left\{{}\begin{matrix}\sqrt{u}+\sqrt{v}=7\\u.v=6\end{matrix}\right.\) khi đó |u-v| bằng ...
3,cho 2 số a, tm\(a^2+b^2=4a+2b+540\)
GTLN của \(P=23a+4b+2013\)
1.
\(2P=2\sqrt{x-2}+4\sqrt{x+1}-2x+4016\)
\(=-\left(x-2-2\sqrt{x-2}+1\right)-\left(x+1-4\sqrt{x+1}+4\right)+4020\)
\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4020\)
2.
\(\sqrt{u}+\sqrt{v}=7\Rightarrow u+v+2\sqrt{uv}=49\)
\(\Rightarrow u+v+2\sqrt{6}=49\Rightarrow u+v=49-2\sqrt{6}\)
\(\Rightarrow\left|u-v\right|=\sqrt{\left(u-v\right)^2}=\sqrt{\left(u+v\right)^2-4uv}=\sqrt{\left(49-2\sqrt{6}\right)^2-4.6}=...\)
3.
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
\(P=23\left(a-2\right)+4\left(b-1\right)+2063\)
\(\Rightarrow\left(P-2063\right)^2=\left[23\left(a-2\right)+4\left(b-1\right)\right]^2\le\left(23^2+4^2\right)\left[\left(a-2\right)^2+\left(b-1\right)^2\right]\)
a. Cho số thực x,y thoả mãn: \(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\). Giá trị nhỏ nhất của biểu thức \(P=4\left(x^2+y^2\right)+15xy\)
b. Cho các số thực a,b,c thoả mãn \(\left\{{}\begin{matrix}-8+4a-2b+c>0\\8+4a+2b+c< 0\end{matrix}\right.\). Số giao điểm của đồ thị hàm số \(y=x^3+ax^2+bx+c\) và trục Ox.
a. Đề bài em ghi sai thì phải
Vì:
\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)
b.
Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)
Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R
Hàm bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right)=-8+4a-2b+c>0\)
\(f\left(2\right)=8+4a+2b+c< 0\)
\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)
\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)
\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)
Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)
\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
làm ơn trả lời hộ mk với ah mai mk phải nộp bài r
Cho 2 số a,b thỏa mãn đẳng thức \(\frac{a^2+b^2}{a-2b}=2\).Giá trị lớn nhất của biểu thức P=8a+4b.
Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)
\(\Leftrightarrow a^2+b^2=2a-4b\)
\(\Leftrightarrow a^2+b^2+4b=2a\)
\(\Leftrightarrow a.a+b.b+4b=2.a\)
\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\)
\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)
Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)
\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)
\(\Rightarrow P=8a+4b=24-4=20\)
Cho hai số thỏa mãn đẳng thức \(\frac{a^2+b^2}{a-2b}=2\)
Giá trị lớn nhất của biểu thức \(P=8a+4b\)
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé
cho hai số a, b thoả mãn a^2+b^2=1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A=a^6+b^6
Ta có
A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)
= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)
Ta lại có
1 = a2 + b2 \(\ge\)2ab
\(\Rightarrow ab\le\frac{1}{2}\)(2)
Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi a2 = b2 = 0,5
Giá trị lớn nhất không có