Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
luong ngoc tu
Xem chi tiết
Mr Lazy
2 tháng 4 2016 lúc 22:46

Bỏ số 2013 trong biểu thức cần tìm GTLN cho đơn giản!

\(\left(a-2\right)^2+\left(b-1\right)^2=545\)

Đặt \(a-2=x;\text{ }b-1=y\text{ }\Rightarrow x^2+y^2=545.\)

\(P=23\left(x+2\right)+4\left(y+1\right)+2013=23x+4y+50\)

Ta có: \(\left(A^2+B^2\right)\left(X^2+Y^2\right)-\left(AX+BY\right)^2=\left(AY-BX\right)^2\ge0\)

\(\Rightarrow\left(A^2+B^2\right)\left(X^2+Y^2\right)\ge\left(AX+BY\right)^2\)

Dấu bằng xảy ra khi \(AY-BX=0\Leftrightarrow AY=BX\)

Áp dụng: \(\left(23.x+4.y\right)^2\le\left(23^2+4^2\right)\left(x^2+y^2\right)=545.545=545^2\)

\(\Rightarrow23x+4y\le545\)

Dấu bằng xảy ra khi \(\int^{23y=4x}_{23x+4y=545}\Leftrightarrow\int^{x=23}_{y=4}\)

\(\Rightarrow maxP=545+50=595\)

Lê Huỳnh
Xem chi tiết
Ngọc Hiền
Xem chi tiết
Hoa Ngọc Lan
9 tháng 4 2017 lúc 14:54

mình đánh nhầm sửa lại nhé

maxp=2068\(\Leftrightarrow\)\(\Leftrightarrow\Leftrightarrow\)\(\Leftrightarrow\) a=25;b=5

Hoa Ngọc Lan
9 tháng 4 2017 lúc 14:51

1)maxP=2068\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) khi và chỉ khi a=25 ; b=5

Hoa Ngọc Lan
9 tháng 4 2017 lúc 14:55

hihi

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2021 lúc 21:12

1.

\(2P=2\sqrt{x-2}+4\sqrt{x+1}-2x+4016\)

\(=-\left(x-2-2\sqrt{x-2}+1\right)-\left(x+1-4\sqrt{x+1}+4\right)+4020\)

\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4020\)

2.

\(\sqrt{u}+\sqrt{v}=7\Rightarrow u+v+2\sqrt{uv}=49\)

\(\Rightarrow u+v+2\sqrt{6}=49\Rightarrow u+v=49-2\sqrt{6}\)

\(\Rightarrow\left|u-v\right|=\sqrt{\left(u-v\right)^2}=\sqrt{\left(u+v\right)^2-4uv}=\sqrt{\left(49-2\sqrt{6}\right)^2-4.6}=...\)

3.

\(\left(a-2\right)^2+\left(b-1\right)^2=545\)

\(P=23\left(a-2\right)+4\left(b-1\right)+2063\)

\(\Rightarrow\left(P-2063\right)^2=\left[23\left(a-2\right)+4\left(b-1\right)\right]^2\le\left(23^2+4^2\right)\left[\left(a-2\right)^2+\left(b-1\right)^2\right]\)

Nguyen Thi Mai
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:38

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 10:43

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

Như Trần khánh
Xem chi tiết
Như Trần khánh
16 tháng 11 2021 lúc 22:49

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

Ninh Thị Quỳnh Như
Xem chi tiết
Trần Tuấn Đoàn
12 tháng 3 2017 lúc 12:13

Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)  

\(\Leftrightarrow a^2+b^2=2a-4b\) 

\(\Leftrightarrow a^2+b^2+4b=2a\)

\(\Leftrightarrow a.a+b.b+4b=2.a\)

\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\) 

\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)

\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)

Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)

\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)

\(\Rightarrow P=8a+4b=24-4=20\)

Lê Minh Đức
Xem chi tiết
alibaba nguyễn
10 tháng 4 2017 lúc 9:27

Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được

\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)

\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)

Để PT có nghiệm thì:

\(\Delta'\ge0\)

Làm tiếp nhé

nguyễn thị ngọc minh
14 tháng 3 2017 lúc 21:26

bạn cx thi violympic ak

Lê Minh Đức
14 tháng 3 2017 lúc 22:18

You guess well.

Hoàng Tử Lớp Học
Xem chi tiết
alibaba nguyễn
17 tháng 11 2016 lúc 20:25

Ta có 

A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)

= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)

Ta lại có

1 = a2 + b2 \(\ge\)2ab

\(\Rightarrow ab\le\frac{1}{2}\)(2)

Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi a2 = b2 = 0,5

Giá trị lớn nhất không có