Tính:
M=1/2014.2015 - 1/2014.2013 - 1/2013.2012 -.........- 1/2
1/2014 - 1/2014.2013 - 1/2013.2012 - ... - 1/3.2 - 1/2.1
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{1006}{1007}\)
1/2014 - 1/2014.2013 - 1/2013.2012 - ... - 1/3.2 - 1/2.1
=1/2014-(1/1*2+1/2*3+...+1/2013*2014)
=1/2014-(1-1/2+1/2-1/3+...+1/2013-1/2014)
=1/2014-1+1/2014
=1/1007-1=-1006/1007
1/2015.2014-1/2014.2013-1/2013.2012-........-1/3.2-1/2.1
1. Tính
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(\dfrac{1}{2014}-\dfrac{1}{2014.2013}-\dfrac{1}{2013.2012}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}=\dfrac{1}{2014}-\left(\dfrac{1}{2013.2014}+\dfrac{1}{2012.2013}+....+\dfrac{1}{1.2}\right)=\dfrac{1}{2014}-\left(\dfrac{1}{2013}-\dfrac{1}{2014}+\dfrac{1}{2012}-\dfrac{1}{2013}+...+1-\dfrac{1}{2}\right)=\dfrac{1}{2014}-\left(1-\dfrac{1}{2014}\right)=\dfrac{1}{2014}-\dfrac{2013}{2014}=-\dfrac{2012}{2014}=-\dfrac{1006}{1007}\)
\(\dfrac{1}{2014}-\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}-...-\dfrac{1}{2013\cdot2014}\)
\(=\dfrac{1}{2014}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\right)\)
\(=\dfrac{1}{2014}-1+\dfrac{1}{2014}=-\dfrac{1006}{1007}\)
Tính : \(\frac{1}{2015.2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{2}\)
\(=\frac{2015-2014}{2015.2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{2-1}{2.1}\)
\(=\left(\frac{2015}{2015.2014}-\frac{2014}{2015.2014}\right)-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)
\(=\left(\frac{1}{2014}-\frac{1}{2015}\right)-\left(\frac{1}{2013}-\frac{1}{2014}\right)-\left(\frac{1}{2012}-\frac{1}{2013}\right)-...-\left(1-\frac{1}{2}\right)\)
\(=\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2012}+\frac{1}{2013}-...-1+\frac{1}{2}\)
\(=\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2014}-1=\frac{1}{1007}-\frac{1}{2015}-1=...\)
tính hợp lí nếu có thể
1/2014-1/2014.2013-1/2013.2012-...-1/3.2-1/2.1
\(=\frac{1}{2014}-\frac{2014-2013}{2014.2013}-\frac{2013-2012}{2013.2012}-...-\frac{3-2}{3.2}-\frac{2-1}{2.1}\)
\(=\frac{1}{2014}-\left(\frac{2014}{2014.2013}-\frac{2013}{2014.2013}\right)-...-\left(\frac{3}{3.2}-\frac{2}{3.2}\right)-\left(\frac{2}{2.1}-\frac{1}{2.1}\right)\)
\(=\frac{1}{2014}+\left(\frac{1}{2014}-\frac{1}{2013}\right)+...+\left(\frac{1}{3}-\frac{1}{2}\right)+\left(\frac{1}{2}-1\right)\)
\(=\frac{1}{1007}-1\)
\(=\frac{-1006}{1007}\)
Bài 1 Rút gọn
a) \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-.....-\frac{1}{4.3}-\frac{1}{3.2}-\frac{1}{2.1}\)
Ta có : \(1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-......-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
\(a,1-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(=1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=1-\left(1-\frac{1}{2014}\right)\)
\(=1-1+\frac{1}{2014}\)
\(=\frac{1}{2014}\)
TÍNH HỢP LÍ( NẾU CÓ THỂ)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)
\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)
....
\(\left(8-\frac{9}{4}+\frac{2}{7}\right)-\left(-6-\frac{3}{7}+\frac{5}{4}\right)-\left(3+\frac{2}{4}-\frac{9}{7}\right)\)\(\frac{9}{7}\))
\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}+\frac{13}{15}+\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-\frac{1}{2012.2011}-...-\frac{1}{3.2}-\frac{1}{2.1}\)