Tìm 3 số nguyên tố liên tiếp x,y,z (x<y<z) sao cho số A=x^2+y^2+z^2 là một số nguyên tố
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
tìm 3 số lẻ liên tiếp đều là các số nguyên tố
các số lẻ liên tiếp cần tìm là: 3;5;7
(study well!)
cho X va Y la hai nguyên tố thuộc hai chu kì liên tiếp va hai nhom liên tiếp biết ZX +ZY =50 hợp chất giữa X và Y phai điều chế gián tiếp tìm hai kim loại đó?
Tìm 4 số nguyên tố liên tiếp sao cho tổng của chúng là 1 số nguyên tố
Hảy tìm 2 số nguyên tố liên tiếp có tổng = 24
11+13=24
11 là số nguyên tố
13 cũng là số nguyên tố nên hai số dó là 11 và 13
1 và 23 ; 5 và 19 ; 7 và 17 ; 11 và 13
1. Tìm n thuộc N để(n+3)(n+4)là một số chính phương
2. Tìm số nguyên tố p để
a)p+10 và p+20 đều là số nguyên tố
b)p+2 và p+94 đều là số nguyên tố
c)p+6;p+8;p+12;p+14 đều là số nguyên tố
3. Cho p1 bé hơn p2 là hai số nguyên tố lẻ liên tiếp
CMR:(p1+p2) :2 là hợp số
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
trong dãy số tự nhiên có thể tìm được 2014 số liên tiếp khác nhau mà không có số nguyên tố nào hay không
Tìm các số tự nhiên x,y,z (x<y<z) sao cho số \(A=x^2+y^2+z^2\)là một số nguyên tố.