Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Anh
Xem chi tiết
Nguyễn Anh Quân
10 tháng 11 2017 lúc 13:14

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

KAl(SO4)2·12H2O
10 tháng 11 2017 lúc 13:09

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

Phạm Tuấn Đạt
10 tháng 11 2017 lúc 13:13

a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

b, với m lẻ từ hằng đẳng thức đáng nhớ ta có 
a^m+b^m=(a+b) {a^(m-1)-[a^(m-2)]b+...-a.[b^(m-2)]+b^(m... chia hết cho a+b 
 

Đinh Đức Hùng
Xem chi tiết
Đinh Đức Hùng
9 tháng 3 2016 lúc 19:38

Ta có :

\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)         

  \(\frac{1}{4^2}=\frac{1}{4.4}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.......................

\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Cộng vế với vế , ta được :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Vì 99 < 100 nên \(\frac{99}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\left(đpcm\right)\)

Vương Thị Diễm Quỳnh
9 tháng 3 2016 lúc 19:39

1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...+1/100^2< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 

=>1/2^2 +1/3^2+...+1/100^2<1
=> ĐPCM

Nguyễn Hưng Phát
9 tháng 3 2016 lúc 19:40

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};............;\frac{1}{100^2}<\frac{1}{99.100}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}\)\(<\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.............+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}<1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}<1\)

doan thi tuyet
Xem chi tiết
☆MĭηɦღAηɦ❄
10 tháng 11 2017 lúc 20:29

mệt quá

TPA
10 tháng 11 2017 lúc 20:41

a)Ta có:S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 +...+2^199+ 2^200.

=( 2^1 + 2^2) + (2^3 + 2^4) + (2^5+2^6)+...+(2^197+2^198)+(2^199+2^200).

=2.(1+2)+2^3.(1+2)+2^5.(1+2)+...+2^197.(1+2)+2^199(1+2)

=2.3+2^3.3+2^5.3+...+2^197.3+2^199.3

=3.(2+2^3+2^5+...+2^197+2^199)

Vậy tổng S chia hết cho 3.

Xin lỗi bn,mik o làm kịp

where is perry
10 tháng 11 2017 lúc 20:54

S chia hết cho 3

ta có S = (2+2^2)+(2^3 + 2^ 4)+....+2^199x(1+2)chia hết cho 3

S = 2x(1+2) + 2^3x(1+2)+....+2^199x(1+2)

S=2 x 3+2^3x3+...+2^199 x 3 

Suy ra S chia hết cho 3

Cũng thế ta có

(2+2^2+2^3+2^4)+....+(2^197+2^198+2^199+2^200)=2x15+...+2^197x15vif 15 x bất kì số nào thì sẽ chia hết cho 5

ta gọi các chữ số là tập hợp A

A={5;15;25;35....}

baro
Xem chi tiết
Kiều Vũ Linh
20 tháng 12 2023 lúc 17:08

Đặt B = 2² + 2³ + 2⁴ + ... + 2²⁰²³

⇒ 2B = 2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴

⇒ B = 2B - B

= (2³ + 2⁴ + 2⁵ + ... + 2²⁰²⁴) - (2² + 2³ + 2⁴ + ... + 2²⁰²³)

= 2²⁰²⁴ - 2²

⇒ A = 2² + 2²⁰²⁴ - 2² = 2²⁰²⁴

= 2.2²⁰²³ ⋮ 2²⁰²³

Vậy A ⋮ 2²⁰²³

Akai Haruma
20 tháng 12 2023 lúc 17:02

Lời giải:

$A=4+2^2+2^3+....+2^{2023}$

$2A=8+2^3+2^4+...+2^{2024}$

$\Rightarrow 2A-A=(8+2^3+2^4+...+2^{2024})-(4+2^2+2^3+....+2^{2023})$

$\Rightarrow A=2^{2024}+8-4-2^2=2^{2024}\vdots 2^{2023}$

Ta có đpcm/

Văn Thị Thuỳ Dương
Xem chi tiết
Harune Aira
Xem chi tiết
나 재민
5 tháng 12 2017 lúc 19:20

Bạn ơi chứng minh cái đấy làm sao ạ ?

Hồ Hoài Anh
5 tháng 12 2017 lúc 19:21

chứng minh gì thế bạn

Lê Minh Hương
Xem chi tiết
Tuấn
20 tháng 8 2016 lúc 22:59

\(A=\sqrt[3]{60+\sqrt[3]{60+...}}\Rightarrow A^3=60+\sqrt[3]{60+\sqrt[3]{60+..}}\)
\(\Leftrightarrow A^3=60+A\Leftrightarrow A^3-A-60=0\Leftrightarrow\left(A-4\right).\left(A^2+4A+15\right)=0\)
\(\Rightarrow A=4\)==' cái này là sấp xỉ thôi

alibaba nguyễn
22 tháng 8 2016 lúc 17:43

T cũng tham gia cho vui nhé ☺

alibaba nguyễn
22 tháng 8 2016 lúc 17:51

Ta có A > \(\sqrt[3]{27}\)

Nên A > 3 (1)

Ta có \(\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{60}}}\)\(\sqrt[3]{60+\sqrt[3]{60+...+\sqrt[3]{64}}}\) = 4 (2)

Từ (1) và (2) ta có 3<A<4

hulk0509
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 20:54

\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)

\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)

\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)

\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)

\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)

\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)

Zek Tim
Xem chi tiết
Thanh Tùng DZ
13 tháng 9 2016 lúc 21:25

\(A=2^2+2^2+2^3+2^4+...+2^{20}\)

\(2A=2^3+2^3+2^4+2^5+...+2^{21}\)

\(2A-A=\left(2^3+2^3+2^4+2^5+...+2^{21}\right)-\left(2^2+2^2+2^3+2^4+...+2^{20}\right)\)

\(A=\left(2^3+2^{21}\right)-\left(2^2+2^2\right)\)

\(A=\left(2^{21}+2^3\right)-\left(2^3\right)\)

\(A=2^{21}\)