Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TS Minh Quan
Xem chi tiết
Ánh Lê Ngọc
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 11:18

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Thanh Tu Nguyen
Xem chi tiết
Nguyễn Ngọc Anh Minh
9 tháng 11 2023 lúc 8:16

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

Nguyễn Văn Khoa
Xem chi tiết
Upin & Ipin
20 tháng 5 2020 lúc 21:22

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Hồng Hà Thị
Xem chi tiết
Kiệt Nguyễn
26 tháng 11 2019 lúc 19:56

Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2ab+2bc+2ac=2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(1\right)\)xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

\(\Rightarrow M=ab+bc+ca-\left(a+b+c\right)+1=3a^2-3a+1\)

\(=\left(\sqrt{3}a\right)^2-2.\sqrt{3}a.\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}\)

\(=\left(\sqrt{3}a-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

(Dấu "=" \(\Leftrightarrow\sqrt{3}a-\frac{\sqrt{3}}{2}=0\Leftrightarrow a=\frac{1}{2}\)

hay \(a=b=c=\frac{1}{2}\)

Vậy \(M_{min}=\frac{1}{4}\Leftrightarrow a=b=c=\frac{1}{2}\)

Khách vãng lai đã xóa
tth_new
25 tháng 11 2019 lúc 19:52

giả thiết \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (biến đổi tương đương)

Thay xuống: \(M=3a^2-3a+1=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=\frac{1}{2}\)

P/s; hướng làm là đưa về 1 biến như vậy đó, khi tính toán có thể có sai số, bạn tự check lại.

Khách vãng lai đã xóa

Hình đại diện Tiêu Chiến phiên bản cổ trang,hình như là phim Trần Tình Lệnh.

Khách vãng lai đã xóa
Nguyễn Thị Kim Tuyến
Xem chi tiết
Nguyễn Linh Chi
20 tháng 11 2019 lúc 16:32

Câu hỏi của Phạm Trần Minh Trí - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo.

Khách vãng lai đã xóa
Phạm Trần Minh Trí
Xem chi tiết
tth_new
20 tháng 11 2019 lúc 16:21

Áp dụng BĐT AM-GM: \(\frac{a^3}{\left(b+c\right)^2}+\frac{b+c}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

Suy ra \(\frac{a^3}{\left(b+c\right)^2}\ge\frac{3a-b-c}{4}\)

Tương tự các BĐT còn lại và cộng theo vế ta được \(VT\ge\frac{a+b+c}{4}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b=  c = 2

Khách vãng lai đã xóa
tth_new
20 tháng 11 2019 lúc 16:31

Có cách UCT :)

\(P=\Sigma_{cyc}\frac{a^3}{\left(6-a\right)^2}\)

Xét BĐT phụ: \(\frac{a^3}{\left(6-a\right)^2}\ge a-\frac{3}{2}\Leftrightarrow\frac{27\left(a-2\right)^2}{2\left(a-6\right)^2}\ge0\)(luôn đúng)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế..

Khách vãng lai đã xóa
Vũ Bảo Lam
15 tháng 5 2020 lúc 22:48

Đẳng thức xảy ra khi a=b=c=2

Đó nhớ cho mình nha 

Khách vãng lai đã xóa
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 16:11

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)