Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồng Hà Thị
Xem chi tiết
do thi kieu trinh
Xem chi tiết
Đinh Tuấn Việt
22 tháng 9 2015 lúc 21:41

Bài 1 :

Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ

Bài 2 :

Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn 

10 - 6a3 _Trương Khánh L...
Xem chi tiết
Lê Công Phúc Anh
13 tháng 3 2022 lúc 20:21

qqqqqqqqqqqqqq

Khách vãng lai đã xóa
Phạm Nhật Anh
Xem chi tiết
Trần Thị Loan
10 tháng 11 2015 lúc 23:21

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

Trần Nguyên Hạnh
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 7 2016 lúc 20:54

Đề bài của bạn sai nhé , phải là \(\left(n^2-1\right)⋮8\)

Giải như sau : Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N^{\text{*}}\right)\)

\(\Rightarrow n^2-1=\left(2k+1\right)^2-1=2k\left(2k+2\right)=4k\left(k+1\right)\)

Vì k(k+1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2 => 4k(k+1) chia hết cho 4.2 = 8 hay \(n^2-1\) luôn chia hết cho 8 vói mọi n lẻ

Hoàng Hưng Đạo
Xem chi tiết
Nguyễn Nhã Linh
Xem chi tiết
Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Hoàng Hưng Đạo
Xem chi tiết
missing you =
15 tháng 5 2021 lúc 6:22

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

missing you =
15 tháng 5 2021 lúc 6:22

bài kia làm tương tự