Rút gọn Bt
A= \(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-.......-\frac{1}{47.49}-\frac{1}{49.51}\)
Tính nhanh : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{49.51}\)
=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)
=1/2.(1-1/51)
=1/2.50/51
=25/51
=1/2.(2/1.3 + 2/3.5 + 2/5.7 +.....+ 2/49.51)
=1/2.(1-1/3+1/3-1/5+1/5-1/7+.....+1/49-1/51)
=1/2.(1-1/51)
=1/2.50/51
=25/51
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2.}\left(1-\frac{1}{1}+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{50}{51}\)
\(=\frac{25}{51}\)
Tính: B= \(\frac{1}{1.3}-\frac{1}{3.5}-....-\frac{1}{47.49}-\frac{1}{49.51}\)
C=\((-\frac{1}{7})^0+\left(-\frac{1}{7}\right)^1+...+\left(-\frac{1}{7}\right)^{2017}\)
\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+.........+\(\frac{1}{47.49}\)=\(\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\Rightarrow x=\frac{49}{24}\)
\(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{24}{49}=\frac{1}{x}\)\(\Rightarrow x=\frac{49}{24}\)
rút gọn tông S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.100}\) ta được S=
2S = 2/1.3+1/3.5+2/5.7+...+2/99.100
2S = 1/1-1/3+1/3-1/5+....+1/99-1/100
2S = 1-1/100
2S = 99/100
S = 99/100:2
S = 99/200
ủng hộ mk nhé
= \(\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}+\frac{1}{100}\right)\)
=\(\frac{1}{2}x\frac{1}{100}=\frac{1}{200}\)
vậy S = \(\frac{1}{200}\)
Rút gọn biểu thức: \(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....\left(1+\frac{1}{49.51}\right)\)+ \(\frac{2}{51}\)
Ta có công thức : với n thuộc N* thì ta luôn có :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng vào bài toán ta được :
\(P=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{49.51}\right)+\frac{2}{51}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.......\frac{50^2}{49.51}+\frac{2}{51}\)
\(=\frac{\left(2.3.4...50\right)\left(2.3.4...50\right)}{\left(1.2.3...49\right)\left(3.4.5....51\right)}+\frac{2}{51}\)
\(=\frac{50.2}{51}+\frac{2}{51}=\frac{102}{51}=2\)
\(\frac{1}{1.3}+\left|\frac{-1}{3.5}\right|+\left|\frac{-1}{5.7}\right|+...+\left|\frac{-1}{49.51}\right|\)
Mình cần gấp, các bạn giải nhanh lên nha !
\(\frac{1}{1.3}+\left|\frac{-1}{3.5}\right|+\left|\frac{-1}{5.7}\right|+...+\left|\frac{-1}{49.51}\right|=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\left(1-\frac{1}{51}\right)=\frac{1}{2}.\frac{50}{51}=\frac{25}{51}\)
\(\frac{1}{1.3}+\left|-\frac{1}{3.5}\right|+\left|-\frac{1}{5.7}\right|+...+\left|-\frac{1}{49.51}\right|\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49\cdot51}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{50}{51}\)
\(=\frac{25}{51}\)
Tính:
C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+.......+\frac{3}{49.51}\)
C=\(\frac{1}{7}+\frac{1}{91}+\frac{1}{247}+\frac{1}{475}+\frac{1}{775}+\frac{1}{1147}\)
C=\(\frac{1}{6}\left\{\frac{6}{1.7}+\frac{6}{7.13}+\frac{6}{13.19}+...+\frac{6}{31.37}\right\}\)=\(\frac{1}{6}\left(1-\frac{1}{7}+\frac{1}{7}+....+\frac{1}{31}-\frac{1}{37}\right)\)
C=\(\frac{1}{6}\left(1-\frac{1}{37}\right)=\frac{1}{6}.\frac{36}{37}=\frac{36}{222}=\frac{6}{37}\)
D=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+......+\frac{3}{49.51}\)
D=\(\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
D=\(\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
D=\(\frac{3}{2}\left(1-\frac{1}{51}\right)=\frac{3}{2}.\frac{50}{51}\)
D=\(\frac{150}{102}\)=\(\frac{25}{17}\)
TÍNH TỔNG :
a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
c) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
d) \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{24.25}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{24}-\frac{1}{25}\)
\(=\frac{1}{5}-\frac{1}{25}\)
\(=\frac{4}{25}\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
Gọi biểu thức trên là A
Tính nhanh
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56};\)
\(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.......+\frac{3}{49.51};\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+.......+\frac{3}{49.51};\)
\(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+......+\frac{1}{2010.2011}\)
\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\)
\(=\frac{3}{8}\)
\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)
\(=1-0-0-0-...-0-\frac{1}{16}\)
\(=1-\frac{1}{16}\)
\(=\frac{15}{16}\)
\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\frac{50}{51}\)
\(=\frac{25}{17}\)
\(d,\)giống câu a tự làm nha mỏi tay quá.
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)
=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)
=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)
1/2*3+1/3*4+1/4*5+...+1/7*8
1/2-1/3+1/3-1/4+1/4-1/5-...-1/8
1/2-1/8=3/8
1/4-1/7+1/7-1/10+1/10-1/13-...-1/52 49/52 bạn nhé
1/4-1/52=3/13
câu này mình gọi nó là S
ta có S:2=2/1*3+2/3*5+...+2/49*51
1/1-1/3+1/3-1/5+...+1/49-1/51
1/1-1/51=50/51
S=50/51*2=100/51
1/100-1/101+1/101-1/102+1/102-1/103+...+1/2010-1/2011
1/100-1/2011
bạn tích đi nhé mình còn phải đi học bạn k cho mình nhé