C=3 + 3^2+3^3+3^4+....+3^100. chứng tỏ C chia hết cho 40
Cho c = 3+3^2+3^3+3^4+........+3^100 chứng tỏ rằng C chia hết cho 40
C = 3 + 32 + 33 + 34 + .... + 3100
C = (3 + 32 + 33 + 34) + ....... + (397 + 398 + 399 +3100)
C = 3(1 + 3 + 32 + 33) + ... + 397 (1 + 3 + 32 + 33)
C = 3. 40 + ... + 397 . 40
C = 40(3 + ... + 397) chia hết cho 40
C=3+3^2+3^3+....+3^100 C=(3+3^2+3^3+3^4)+........+(3^97+3^98+3^99+3^100) C=3(1+3+3^2+3^3)+..........+3^97( 1+3+3^2+3^3) C=3*40+.......+3^97*40 C=40(3+.....+3^97) chia hết cho40 nhớ l i k e cho mình nha
C=3+3^2+3^3+...+3^100
C=( 3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)
C=3.(1+3+3^2+3^3)+3^5.(1+3+3^2+3^3)+...+3^97.(1+3+3^2+3^3)
C=3.40+3^5.40+...+3^97.40
C=40.( 3+3^5+...+3^97) chia hết cho 40
L I K E cho mình nhé
a/Chứng tỏ rằng: 2x + 3y chia hết cho 17<=> 9x=5y chia hết cho 17
b/ cho C= 3+3^2 +3^3+3^4+...+3^100. chứng tỏ C chia hết cho 40
c/ tìm các số nguyễn x, y thỏa mãn (x-2)^2.(y-3)=-4
Cho C=3+3^2+3^3+3^4+.....+3^100 chứng tỏ C chia hết cho 40
(giải giúp mk nhé )
cho C = 3+32+33+34+...+3100. Chứng tỏ C chia hết cho 40
\(C=3+3^2+3^3+...+3^{100}=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)=3.40+...+3^{97}.40=\left(3+...+3^{97}\right).40\) chia hết cho 40
C = 3 + 32 + 34 + ... + 3100
Chứng tỏ C chia hết cho 40
\(C=3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+3^{97}\left(1+3+3^2+3^3\right)\)
\(=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{97}\right)\)
\(=40\left(3+3^5+...+3^{97}\right)⋮40\left(đpcm\right)\)
C = 3 + 32 + 34 + ... + 3100
= (3 + 32) + (34 + 36) + ... + (398 + 3100)
= 3(1 + 3) + 34(1 + 32) + ... + 398(1 + 32)
= 3.4 + 34.10 + ... + 398.10
= 3.4 + 10(34 + ... + 398)
Ta có: \(\hept{\begin{cases}3.4⋮4\\10\left(3^4+...+3^{98}\right)⋮10\end{cases}}\)=> C \(⋮\)40 (đpcm)
Mình ko biết bạn viết đề đúng ko nữa
Nhưng mình làm theo đề bn viết
Nếu sai thì ko phải do mình mà do bn viết sai đề nhé!
Cho C =3+32+33+34+...+3100chứng tỏ C chia hết cho 40
Ta có : C = ( 3 + 32 + 33 + 34 ) + ( 35 + 36 + 37 + 38 ) + .... + ( 397 + 398 + 399 + 3100 )
=> C = 3.( 1 + 3 + 3.3 + 33 ) + 35.( 1 + 3 + 3.3 + 33 ) + .... + 397.( 1 + 3 + 3.3 + 33 )
=> C = 3. 40 + 35.40 + .... + 397.40
=> C = 40.( 3 + 35 + 39 + .... + 397 )
Vì 40 ⋮ 40 nên C ⋮ 40 ( đpcm )
a, Cho C = \(3+3^2+3^3+...+3^{100}\) chứng tỏ C chia hết cho 40.
b, Chứng minh rằng: C = \(2+2^2+2+3+...+2^{99}+2^{100}\) chia hết cho 31.
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
cho C=3+32+33+.....+3100 chứng tỏ rằng C chia hết cho 40
rút gọn c=40.(1+3^2+...+3^100)chia hết cho40
a,Cho C= \(3+3^{2
}+3^3+3^4+............+3^{100}\)
Chứng tỏ C chia hết cho 40.
b, Cho các số 0;1;3;5;7;9.Có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
HELP ME!!
Ta có :
3 + 32 + 33 + 34 + ........ + 3100 \(⋮\) 40
( 3 + 32 + 33 + 34 ) + ........ + ( 397 + 398 + 399 + 3100 )
120 + ...... + 396. ( 3 + 32 + 33 + 34 )
120 + ...... + 396 . 120
120 . ( 1 + ..... + 396 )
40 . 3 . ( 1 + ..... + 396 )
Vậy : 3 + 32 + 33 + 34 + ........ + 3100 \(⋮\) 40
a, C = 3 + 32 + 33 + 34 + ........ + 3100
= (3 + 32 + 33 + 34) + ......... + (397 + 398 + 399 + 3100)
= 3.(1 + 3 + 9 + 27) + ......... + 397.(1 + 3 + 9 + 27)
= 3.40 + ...........+ 397.40
= 40.(3 + ......... + 397)
\(40.\left(3+.......+3^{97}\right)⋮40\)
\(\Rightarrow3+3^2+3^3+3^4+.......+3^{100}⋮40\)
Chúc bạn thành công!