Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
♊Ngọc Hân♊
Xem chi tiết
vũ thị kim anh
Xem chi tiết
Phúc Hồ Thị Ngọc
15 tháng 12 2014 lúc 22:24

Câu a) Tứ giác là hình bình hành bởi vì 2 đường chéo cắt nhau tại trung điểm mỗi đường

Câu b) MI vuông góc với AB bởi vì trong tam giác ABC: MI là đường trung bình mà AC vuông góc AB suy ra MI vuông góc AB

Câu c) Áp dụng định lý Pytago thì bạn sẽ tính được cạnh AB và sẽ tính được diện tích ABC bằng 30

Nguyễn Hồng
Xem chi tiết
Nguyễn Huệ Lam
27 tháng 6 2017 lúc 15:23

A B C M D I 5cm 13cm

Hoàng Nghĩa Nhân
Xem chi tiết
Tuấn Nguyễn
6 tháng 7 2019 lúc 20:15

A B C D E M I

Gọi E là trung điểm của CD.

Xét tam giác BDC ta có:

M là trung điểm của BC ( gt )

E là trung điểm của CD (cách vẽ)

=> EM là đường trung trực của tam giác BDC.

=> EM // BD => EM // ID ( I thuộc BD )

Xét tam giác AME có:

I là trung điểm của AM (gt)

EM // ID (cmt)

=> D là trung điểm của AE

Xét tam giác AME có:

I là trung điểm của AM (gt)

D là trung điểm của AE (cmt)

=> ID là đường trung bình của tam giác AME.

\(\Rightarrow ID=\frac{1}{2}ME\)

Mà \(ME=\frac{1}{2}BD\) ( ME là đường trung bình của tam giác BDC )

Nên \(ID=\frac{1}{4}BD\left(1\right)\)

Xét tam giác ABC vuông tại A ta có:

BC2 = AB2+AC2 ( Định lý Pitago thuận)

Thay: 

132 = 52 + AC2

169 = 25 + AC=> AC2 = 169 - 25 = 144

=> AC2 = 122

=> AC = 12 (cm)

Ta có: AD = ED ( D là trung điểm của AE )

ED = EC ( E là trung điểm của DC)

=> AD = ED = EC

Mà AD + ED + EC = AC (gt)

Nên: AD + AD + AD = AC 

=> 3AD = AC

=> AD = AC/3

Mặt khác AC = 12 cm (cmt)

=> AD = 12/3 = 4 (cm)

Xét tam giác ABD vuông tại A ta có:

BD2 = AB2+AD( định lý Pitago thuận)

BD= 52+42

BD2 = 25 + 20

BD2 = 45

=> \(BD=\sqrt{45}\Rightarrow BD=3\sqrt{5}\left(cm\right)\left(2\right)\)

Thế (2) vào (1) ta được:

\(ID=\frac{3\sqrt{5}}{4}\left(cm\right)\left(3\right)\)

Ta có: 

BI + ID = BD ( I thuộc BD )

=> BI = BD - ID (4)

Thế (2), (3) vào (4) ta được:

\(BI=3\sqrt{5}-\frac{3\sqrt{5}}{4}\)

\(BI=3\sqrt{5}\left(1-\frac{1}{4}\right)\)

\(BI=3\sqrt{5}.\frac{3}{4}\)

\(BI=\frac{9\sqrt{5}}{4}\left(cm\right)\)

Chu Đức Trí
Xem chi tiết
ღ๖ۣۜBĭη➻²ƙ⁸ღ
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 16:50

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

Akai Haruma
25 tháng 2 2021 lúc 16:51

Hình vẽ:

undefined

Nguyễn Quốc Khánh Hoàng
Xem chi tiết
Nguyễn Phương Uyên
28 tháng 2 2020 lúc 8:25

b2 :

a, xét tam giác ABD và tam giác ACE có: góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc ADB = góc AEC = 90

=> tam giác ABD = tam giác ACE (ch-cgv)

b, tam giác ABD = tam giác ACE (câu a)

=> góc ABD = góc ACE (đn)

góc ABC = góc ACB do tam giác ABC cân tại A (gt)

góc HBC = góc ABC - góc ABD

góc HCB = góc ACB - góc ACE 

=> góc HBC = góc HCB 

=> tam giác HBC cân tại H (Dh)

Khách vãng lai đã xóa
Nguyễn Quốc Khánh Hoàng
28 tháng 2 2020 lúc 8:34

còn câu 1

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Anh
Xem chi tiết
Rhider
5 tháng 2 2022 lúc 15:43

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

Hoang NGo
Xem chi tiết
Nguyễn Huy Tú
13 tháng 2 2022 lúc 17:01

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm