so sánh: A=(101990+1)/(101991+1) VÀ B=(101991+1)/(101992+1)
So sánh:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\) và B=\(\dfrac{10^{1991}+1}{10^{1992}+1}\)
đáng ra là toán lớp 6 đó nhưng mik thích đặt toán lớp 5 :)
A = \(\dfrac{10^{1990}+1}{10^{1991}+1}\) ⇒ 10A = \(\dfrac{10^{1991}+10}{10^{1991}+1}\) = \(1+\dfrac{9}{10^{1991}+1}\)
B = \(\dfrac{10^{1991}+10}{10^{1992}+1}\) ⇒ 10B = \(\dfrac{10^{1992}+10}{10^{1992}+1}\) = 1 + \(\dfrac{9}{10^{1992}+1}\)
Vì \(\dfrac{9}{10^{1991}+1}\) > \(\dfrac{9}{10^{1992}+1}\)
10A > 10B => A > B
So sánh: A=10^1990+1/10^1991+1 và B=10^1991+1/10^1992+1
so sánh \(\dfrac{10^{1990}+1}{10^{1991}+1}\)và \(\dfrac{10^{1991}}{10^{1992}}\)
Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)
so sánh A=10 mũ 1990+1/10 mũ 1991+1 và B=10 mũ 1991+1/10 mũ 1992+1 lời giải chi tiết
so sánh A=10 mũ 1990+1/10 mũ 1991+1 và B=10 mũ 1991+1/10 mũ 1992+1 lời giải chi tiết nha
So sánh: A= 101990+1/101991+1 và 101991+1/101992+1
so sánh:
\(A=\frac{10^{1990}+1}{10^{1991}+1}\)và\(B=\frac{10^{1991}+1}{10^{1992}+1}\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)
=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)
=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)
=> B < A
Bài này mình biết làm nè , nhưng ... dài dòng lắm
A=\(\frac{10^{1990+1}}{10^{1991+1}}\);; B=\(\frac{10^{1991+1}}{10^{1992+1}}\)
Hãy so sánh A và B
Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)
\(=>10A=1+\frac{9}{10^{1991}+1}\)
Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)
Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)
\(=>A>B\)
đăt 10A=\(\frac{10^{1991}+1}{10^{1991}+1}\)=1+\(\frac{9}{10^{1991}}\)
Câu B tương tự
ta có:\(\frac{9}{10^{1991}+1}\)>\(\frac{9}{10^{1992}}\)
nên 10A>10B
=>A>b
So Sánh:
A=101990+1 phần 101991+1 và B= 101991+1 phần 101992+ 1
A=10^1990+1/10^1991
A=10.(10^1990+1 / 10^1991+1)
10A=10^1991+10 / 10^1991+1
10A=10^1991+1 / 10^1991+1 +9/10^1991+1
10A=1 + 9/10^1991
B=10^1991+1 / 10^1992+1
B=10.(10^1991+1 / 10^1992+1)
10B=10^1992+10 / 10^1992+1
10B=10^1992+1 / 10^1992+1 + 9/10^1992+1
10B= 1+9/10^1992+1
Ta có 9/10^1991 > 9/10^1992
10A > 10B
A > B
Vì \(\frac{10^{1994}+1}{10^{1992}+1}\)<1
=> \(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)
Ta có \(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+2}\)
=>\(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+2}\)
Vậy B < A