Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yoyo2003ht
Xem chi tiết
Dich Duong Thien Ti
Xem chi tiết
Vân Thúy
Xem chi tiết
Sky Lawson
Xem chi tiết
Minh Thư
9 tháng 10 2019 lúc 20:53

Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath

Tham khảo tính được x,y,z.Thay vào A

nguyen cnah hao
Xem chi tiết
Hoàng Đức Khải
Xem chi tiết
pham trung thanh
8 tháng 11 2017 lúc 20:35

Áp dụng BĐT Cô-si cho 2 số dương, ta có:

\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)

Chứng minh tương tự, ta có

\(18y+\frac{2}{y}\ge12\)

\(18z+\frac{2}{z}\ge12\)

Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)

Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)

Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)

                           \(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)

Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)

long Bui
Xem chi tiết
Nguyễn thị Tuyết Ngân
Xem chi tiết
Phạm Băng Băng
Xem chi tiết