Cho x,y,z thoa man x^3+y^3+z^3=1 va x((1/y)+(1/z))+y((1/z)+(1/x))+z((1/x)+(1/y))=-2 Tinh 1/x + 1/y + 1/z
Cho 3 so thuc duong x,y,z thoa man: x^2+y^3+z^4=1.CMR:x^5+y^6+z^7<1
tim cac so m,n,p thoa man : m+n+p+8=2canm-1 + 4cann-2 +6canp-3
tim cac so x,y,z thoa man :canx+cany-1 +canz-2 = 1/2(x+y+z)
tim cac so x,y,z thoa man :x+y+z+4=2canx-2 +4cany-3+6canz-5
cho x,y,z la so thuc thoa man y+z+3/x=x+z+2/y=x+y-3/z=1/x+y+z.
Tinh A=2016.x+y^2017+z^2017
Câu hỏi của Phung Thi Thanh Thao - Toán lớp 7 - Học toán với OnlineMath
Tham khảo tính được x,y,z.Thay vào A
cho x,y,z la 3 so thuc tuy y thoa man x+y+z=0 va -1< x<1,-1<y<1,-1<z<1.chung minh rang da thuc x^2+y^4+z^6 co gia tri khong lon hon 2
cho x,y,z>0 thoa man x+y+z<=1 chung minh rang 17(x+y+z)+2(1/x+1/y+1/z)=>35
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(18x+\frac{2}{x}\ge2\sqrt{18x.\frac{2}{x}}=12\)
Chứng minh tương tự, ta có
\(18y+\frac{2}{y}\ge12\)
\(18z+\frac{2}{z}\ge12\)
Từ đó suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge36\)(*)
Lại có \(x+y+z\le1\Rightarrow-\left(x+y+z\right)\ge-1\)(**)
Từ (*) và (**) suy ra \(18\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-\left(x+y+z\right)\ge36-1\)
\(\Leftrightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Vậy \(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)với \(x+y+z\le1\)
cho x,y,z la cac so thuc duong thoa man x+y+z=1 tim min A=x^3/(x^2+xy+y^2)+y^3/(y^2+yz+z^2)+z^3/(z^2+zx+x^2)
Cho ba số x;y;z thoa man: x-1/2=y-2/3=z-3/4
va 2x+3y-z=50
tìm x;y;z
Cho 3 so x, y, z thoa man cac he thuc: \(\left(z-1\right)x-y=1\) va \(x+zy=2\)
Chmr: \(\left(2x-y\right)\left(z^2-z+1\right)=7\) va tim tat ca cac so nguyen x, y, z thoa man cac he thuc tren.