Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Ngọc Trường Sơn
Xem chi tiết
Khánh Ngọc
5 tháng 5 2019 lúc 16:32

\(2+\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=1\frac{1989}{1991}\)

\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=1\frac{1989}{1991}\)

\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)

\(2\left(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x+1}\right)=1\frac{1989}{1991}\)

\(\frac{8}{3}+2-\frac{2}{x+1}=1\frac{1989}{1991}\)

\(\frac{2}{x+1}=\frac{13}{10}\)( số thập phân dài quá nên mk lấy số tròn thôi nha )

\(x+1=2:\frac{13}{10}\)

\(x+1=\frac{20}{13}\)

\(\Leftrightarrow x=\frac{7}{13}\)

Đặng Anh Thư
Xem chi tiết
Hoàngg Phươngg Anhh
Xem chi tiết
Rimuru tempest
18 tháng 8 2020 lúc 22:19

\(2\left(1+\frac{1}{3}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{3980}{1991}\)

\(1+\frac{1}{3}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+......+\frac{x+1-x}{x\left(x+1\right)}=\frac{1990}{1991}\)

\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{x}-\frac{1}{x-1}=\frac{1990}{1991}\)

\(1+\frac{1}{3}+\frac{1}{2}-\frac{1}{x-1}=\frac{1990}{1991}\)

\(\frac{1}{x-1}=\frac{11}{6}-\frac{1990}{1991}=\frac{9961}{11946}\)

\(x-1=\frac{11946}{9961}\Rightarrow x=\frac{21907}{9961}\)

Iamlaseala
Xem chi tiết
Iamlaseala
Xem chi tiết
Trần Nguyễn Thu Hương
21 tháng 4 2016 lúc 22:16

hóc quá

Đinh Ngọc Thiên Ý
Xem chi tiết
phạm thị quỳnh anh
Xem chi tiết
Nguyễn Yu
Xem chi tiết
hoàng dình hạnh
26 tháng 7 2017 lúc 17:02

bay bài đó với

Nguyễn Yu
Xem chi tiết